Авиламицин инструкция по применению в ветеринарии

Авиламицин

Авиламицин для птиц

Авиламицин активен против грамм-положительных микроорганизмов, особенно в отношении Clostridium perfringens. Действие лекарственного средства основано на нарушении процесса синтеза белка микроорганизмов.

Авиламицин после орального применения незначительно всасывается в желудочно-кишечном тракте, не вызывает регистрируемых уровней микробиологически активных количеств антибиотика в тканях цыплят и выводится из организма преимущественно с пометом.


Запрещается применять курам-несушкам и при индивидуальной чувствительности к авиламицину.


Мясо птицы в период лечения может быть использовано без ограничений.

Адрес: ул. Б.Грузинская, д. 61, стр.2

123056

г. Москва

Сайт использует файлы cookies. Если вы согласны с использованием cookies, нажмите «Я согласен» или отключите cookies в вашем браузере. Узнать, какие данные и как мы используем, можно в нашей Политике обработки персональных данных

Авиламицин 10%, авиламицин 20% Премикс

Avilamycin 10%, Avilamycin 20% Premix (001) .jpg

Наименование продукта: Avilamycin 10%, Avilamycin 20% Premix

Синонимы: Avilamycin Premix (10%, 20%)

Номер CAS: 11051-71-1

Характеристики: от белого до желтоватого кристаллического порошка. Без видимой примеси.

Чистота (анализ): 10%, 20%

Молекулярная формула: C61H88Cl2O32

Пакет: 25kg / Bag; 10кг / Drum

Хранение: Хранить в прохладном и сухом месте.

Срок годности: 2 года

КЛЮЧЕВЫЕ слова:

Avilamycin 10%, Avilamycin 20% Premix, Avilamycin Premix (10%, 20%)

Описание :

Авиламицин является штаммом Streptomyces viridochromogenes, который продуцирует новый кристаллический антибиотик. Авиламицин связан, но не идентичен с курамицином и эксфолиатином. Авиламицин, C63H94O35Cl2, давал на сольволитическую деструкцию следующие продукты: дихлороизоверниновую кислоту, 2-дезокси-d-рамнозу, 2,6-ди-O-метилманозу, 4-O-метилфукозу, 1-лизозу и 3,5-диацетокси-γ капролактона.

10% Avilamycin Premix и 20% Avilamycin Premix Подробное описание:

Ветеринарное использование

Название ветеринарного препарата

Общее название: Avilamycin premix 10%, Avilamycin premix 20%)

Английское название: Avilamycin Premix

Китайское написание: Aweilameisu Yuhunji

Основной компонент Avilamycin

Свойства: Avilamycin 10%, 20% премикс — коричневый порошок.

Использование и применение:

Препарат Avilamycin 10% премикс и авиламицин 20% -ный премикс обладает антибактериальным эффектом, главным образом, на грамположительные бактерии и стимулирующий рост эффект на цыплят (включая бройлеров) и свиней.

Они оба широко используются для увеличения скорости увеличения веса и улучшения эффективности корма для цыплят-бройлеров.

Препарат Avilamycin 10% и авиламицин 20% премикс могут использоваться в качестве средства профилактики некротического энтерита из-за Clostridium perfringens у цыплят-бройлеров.

Препарат Avilamycin 10% премикс и Avilamycin 20% премикс является новым типом продукта стимулирования роста. В настоящее время он широко используется в качестве добавки для кормления свиней и домашней птицы в качестве усилителя питания. Он способен значительно улучшить ежедневную прирост веса свиней и курицы и коэффициент конверсии корма. Препарат 10% премикса Avilamycin и премиум 20% Avilamycin чувствительны к грамположительным бактериям и менее чувствительны к грамотрицательным бактериям. Он также одобрен для использования для профилактики и лечения некротинов энтерита, вызванных clostridium perfringens. Препарат Avilamycin 10% и премиум 20% Avilamycin могут использоваться для борьбы с диареей похудения, вызванной Escherichia coli. Он считается безопасным для человека и животных. Препарат Avilamycin 10% и премиум 20% Avilamycin могут широко использоваться в животноводстве и птицеводстве и аквакультуре.

Фармакологическое действие :

Как олигосахаридный антибиотик, 10% -ный премикс Avilamycin и 20% -ный премикс Avilamycin преимущественно обладают антибактериальными способностями против грамположительных бактерий. Они помогут улучшить усвоение глюкозы в кишечнике свиней и цыплят. Препарат Avilamycin 10% и премикс 20% Avilamycin также будут играть роль в увеличении производства летучих жирных кислот и уменьшить производство молочной кислоты. Таким образом, 10% -ный премикс Авиламицина и 20% -ный премикс Авиламицина, наконец, способствуют росту животных, таких как свиньи и цыплята. Это вещество клинически обеспечивает эффективный адъювантный контроль за возникновение и ухудшение вызванной E. coli диареи у отлученных поросят, при одновременном снижении образования поверхностной адгезии фибробей из escherichia coli; Снижение клеточных фимбрий бактерий ингибирует их адгезию к слизистой оболочке кишечника и уменьшает повреждение кишечника, поэтому премикс 10% Avilamycin и премикс 20% Avilamycin эффективно контролируют заболеваемость диареей и улучшают индекс производительности роста домашнего скота.

Благодаря его пероральному введению, 10% премикса Avilamycin и 20% -ный премикс Avilamycin вряд ли будут поглощаться кишечником, что приводит к чрезвычайно низким остаткам в тканях животных.

Fengchen Group является ведущим поставщиком премикса Avilamycin 10% премикс и 20% премикс-порошка Avilamycin из Китая. Мы специализируемся на оптовых и массовых количествах, гарантируя, что у всех наших клиентов есть правильный поставщик премикса Avilamycin 10% премикс и порошок премикса 20% Avilamycin, когда они в ней нуждаются. Когда вы собираетесь покупать или покупать премикс 10% Avilamycin и премиум-порошок Avilamycin 20%, пожалуйста, обращайтесь к Fengchen Group.

Показания :  

Препарат Avilamycin 10% и премиум 20% премий Avilamycin улучшат среднесуточный прирост и коэффициент возврата на корм свиней и бройлеров; Он также будет полезен для профилактики некротического энтерита, вызванного clostridium perfringens у бройлеров; адъювантный контроль над поносами породистых поросят, вызванный e. палочка-индуцированной.

Дозировка:

По авилимицину; Вмешательство в кормление: для улучшения среднего дневного прироста и коэффициента возврата на корм свиней и бройлеров и предотвращения некротического энтеритинов у бройлеров.

20 ~ 40 г / 1000 кг корма для свиней (0-4 месяца)

10 ~ 20 г / 1000 кг корма для свиней (4-6 месяцев)

5 ~ 10 г / 1000 кг корма для бройлеров

40 ~ 80 г / 1000 кг корма для вспомогательного контроля диареи отнятых поросят

Максимальная продолжительность: 28дней

Неблагоприятный эффект: до сих пор не было обнаружено никакого неблагоприятного эффекта при рекомендованной предварительной добавке авиламицина 10% и дозе премиальной добавки Авиламицина 20%.

Примечания: Хранить в недоступном для детей месте; предотвратить контакт с кожей и глазами человека во время перемешивания и дозирования.

Время вывода: 0 дней для свиней и 0 дней для цыплят.

Спецификации: по авилимицину (1) 100 г: 10 г (2) 100 г: 20 г

Avilamycin, с регистрационным номером CAS 11051-71-1, также известен как Surmax. Молекулярная формула этого химического вещества составляет C61H88Cl2O32, а молекулярный вес 1402,46. Более того, и его имя IUPAC, и систематическое имя те же, что и называется [(2R, 3S, 4R, 6S) -6 — [(2’R, 3’S, 3aR, 4R, 4’R, 6S, 7aR) — 6 — [(2S, 3R, 4R, 5S, 6R) -2 — [(2R, 3S, 4S, 5S, 6S) -6 — [(2R, 3aS, 3’aR, 6’R, 7R, 7’S, 7aR, 7’aR) -7′-ацетил-7′-гидрокси-6′-метил-7- (2-methylpropanoyloxy) спиро [4,6,7,7a-тетрагидро-3aH- [1,3] диоксоло [ 4,5-с] пиран-2,4′-6,7a-дигидро-3aH- [1,3] диоксоло [4,5-с] пиран] -6-ил] окси-4-гидрокси-5-метокси -2- (метоксиметил) oxan-3-ил] окси-3-гидрокси-5-метокси-6-methyloxan-4-ил] окси-4′-гидрокси-2′ , 4,7a-trimethylspiro [3а, 4, 6,7-тетрагидро- [1,3] диоксоло [4,5-с] пиран-2,6′-оксан] -3′-ил] окси-4-гидрокси-2-methyloxan-3-ил] 3, 5-дихлор-4-гидрокси-2-метокси-6-метилбензойной кислоты.

Превосходное качество, Avilamycin 10% премикс и Avilamycin 20% премикс порошок / вещество завода в Китае; Китай Avimamycin 10% премикс и Avilamycin 20% премикс порошок CAS 1137-42-4 Поставщики сырья в Китае. Китай Avimamycin 10% премикс и Avilamycin 20% премикс производителей порошка в Китае.

Сопутствующие товары:

Если вы ищете 10% авиламицина, авиламицин 20% премикс, свяжитесь с нами. Мы являемся одним из ведущих и профессиональных китайских производителей и поставщиков в этой области. Конкурентоспособная цена и хорошее послепродажное обслуживание доступны.

горячая этикетка : авиламицин 10%, авиламицин 20% премикс, производители, поставщики, цена

Авиламицин

Avilamycin

Фармакологическое действие

Авиламицин (пищевая добавка Е717) — относится к антибиотикам, используется в технологических целях в процессе производства пищевых продуктов. Внешне выглядит как масса светлого кремового цвета со специфическим запахом. Авиламицин разработан специально для ветеринарной медицины и животноводства. Используется в качестве стимулятора роста для животных. Аналогов не имеет.

Е717 применяется только в ветеринарии. Используется как ростстимулирующий компонент кормовых смесей и премиксов для животных. Авиламицин используется для лечения бактериального энтерита кур бройлеров, несушек. Улучшает целостность кишечника, позволяет всасываться большему количеству питательных веществ.

Вещество разрешено применять вплоть до дня забоя животных, оно не выделяется из жира, мышц, органов и различных тканей птиц и животных. Яйца кур-несушек, которые подвергались воздействию кормовой добавки, можно употреблять в пищу.

Резистентность

Антибиотики, применяемые в ветеринарии, могут накапливаться в организме животных и приводить к резистентности патогенных микроорганизмов. Может достигаться за счёт биосинтеза микроорганизмом ферментов, инактивирующих лекарственный препарат, либо таким изменением структуры соединений, атакуемых антибиотиком, при котором микроорганизм мог бы продолжать жизнедеятельность в присутствии антимикробного препарата.

Наиболее сильно естественную сопротивляемость организма понижают неудовлетворительные кормление и условия содержания животных. Также отрицательно влияет отсутствие или недостаток моциона. Возраст и порода животного тоже являются важными факторами резистентности.

Беременность и грудное вскармливание

Применение при беременности

Категория действия на плод по FDA — N.

Адекватных и хорошо контролируемых исследований о возможности применения авиламицина у беременных женщин не проведено.

Применение в период грудного вскармливания

Специальных исследований о возможности применения авиламицина в период грудного вскармливания не проведено.

Особые указания

Добавка Е717 не входит в список разрешённых пищевых добавок в продуктах питания. Контроль за использованием всех препаратов антибиотиков осуществляют учреждения государственной ветеринарии.

Классификация

  • Категория при беременности по FDA

    N
    (не классифицировано FDA)

Информация о действующем веществе Авиламицин предназначена для медицинских и фармацевтических специалистов, исключительно в справочных целях. Инструкция не предназначена для замены профессиональной медицинской консультации, диагностики или лечения. Содержащаяся здесь информация может меняться с течением времени. Наиболее точные сведения о применении препаратов, содержащих активное вещество Авиламицин, содержатся в инструкции производителя, прилагаемой к упаковке.

Авиламицин – это антибиотик, который вырабатывают бактерии Streptomyces viridochromogenes, известный также как пищевая добавка E717. Это смесь 16 веществ, основное из которых – авиламицин A. Он относится к ортозомицинам. Авиламицин активен против грамположительных бактерий, в том числе, против клостридий, энтерококков, лактобацилл, листерии, стафилококков и стрептококков. Этот антибиотик не используется в медицине и применяется только в ветеринарии для профилактики и лечения кишечных инфекций, в том числе, некротических энтеритов у кроликов, свиней, индеек и кур. Он входит в состав препарата Максус G 100. Авиламицин действует преимущественно в ЖКТ животных, слабо проникая в ткани. Выводится он быстро, преимущественно с фекалиями. Считается, что его можно давать животным вплоть до забоя. Помимо лечебного эффекта, под действием этого антибиотика ускоряется прирост массы тела у животных. Авиламицин нельзя применять для лечения кур-несушек.

У бактерий авиламицин нарушает синтез белка в рибосомах. У большинства микроорганизмов под действием этого антибиотика не формируется кросс-резистентность: устойчивость к авиламицину не способствует развитию устойчивости к другим антибиотикам. Однако, у энтерококков зафиксировано снижение чувствительности (неполная кросс-резистентность) к эвернимицину – структурно близкому антибиотику. Поскольку рибосомы животных устроены иначе, чем у бактерий, в терапевтических дозах этот антибиотик безопасен для них. В экспериментах на мышах и крысах ЛД50 авиламицина колебалась от более 390 мг/кг массы тела до более чем 12000 мг/кг массы тела. Однако известны случаи аллергии к авиламицину у людей. Кроме того, его порошок раздражает глаза.

Авиламицин не проявляет мутагенных и генотоксичных свойств. В очень высоких дозах при длительном воздействии он тератогенен для крыс и кроликов. Кроме того, в некоторых случаях этот антибиотик приводит к прерыванию беременности. Под действием авиламицина у крыс снижалась свертываемость крови и содержание в ней тромбоцитов. При исследованиях канцерогенности авиламицина у крыс, получавших высокие дозы авиламицина, чаще, чем у контрольной группы возникали аденомы поджелудочной железы, а также карциномы щитовидной железы. Согласно оценкам ВОЗ, авиламицин не считается канцерогенным и эмбриотоксичным и нейротоксичным.

Авиламицин может попадать в окружающую среду как от почвенных бактерий, так и со стоками вод животноводческих хозяйств. В почве этот антибиотик малоподвижен, в воде же быстро адсорбируется на твердых частицах. В соответствии с расчетными данными, авиламицин слабо способен к биоаккумуляции в водных организмах, в том числе, в рыбе.

Основной метаболит авиламицина, образующийся в организмах животных – дихлороизоэверниновая кислота. Именно по ее содержанию рассчитывают максимально допустимые уровни этого антибиотика в тканях животных и продуктах животного происхождения.

Согласно Решению Коллегии Евразийской Экономической Комиссии от 13 февраля 2018 года №28, содержание авиламицина необходимо анализировать в продуктах животного происхождения, полученной от свиней, домашней птицы и кроликов. Максимально допустимый уровень авиламицина в мясе составляет 0,05 мг/кг, в жире-сырце – 0,1 мг/кг, в печени – 0,3 мг/кг, в почках – 0,2 мг/кг.

Литература

  1. Avilamycin. PubChem
  2. Committee For Medicinal Products For Veterinary Use. Avilamycin. Summary Report. European Medicines Agency Veterinary Medicines and Inspections. EMEA/CVMP/102152/2007-Final March 2007
  3. Paradis MA, McMillan E, Bagg R, Vessie G, Zocche A, Thompson M. Efficacy of avilamycin for the prevention of necrotic enteritis caused by a pathogenic strain of Clostridium perfringens in broiler chickens. Avian Pathol. 2016 Jun;45(3):365-9.
  4. Evaluation of Certain Veterinary Drugs Residues in Food. WHO Technical Report Series 954. World Health Organization, 2009.

Synthetic Reactions of Aldonolactones

Rosa M. de Lederkremer, Oscar Varela, in Advances in Carbohydrate Chemistry and Biochemistry, 1994

2 Formation of Orthoester Derivatives

Addition of alcohols to lactones results in the formation of orthoacid or orthoester derivatives. Thus, reaction of lactone 95a with potassium cyanide in ethanol led to displacement of the tosyl group by cyanide and addition of ethanol to the lactone carbonyl group, to give the orthoacid derivative 95b, which was isolated as its acetate 95c. Mild deacylation of 95c led back to 95b, but under more vigorous reaction conditions the open-chain methyl aldonate was obtained (90).

Addition of diols to the carbonyl lactone group leads to the formation of cyclic orthoesters. Compounds containing a spiro, cyclic orthoester interlinkage at the anomeric carbon atom are of interest, as this type of structure is found in the oligosaccharide antibiotics orthosomycins (91) (such as ever-ninomicin, flambamycin, and avilamycin).

Reaction of 2,3,4,6-tetra-O-benzyl-d-glucono-1,5-lactone (51a) with epoxides or with diols afforded the corresponding orthoester derivatives (92,93). When two secondary hydroxyl groups were involved, low yields were obtained. The reaction conditions were optimized, and it was shown that condensation of lactone derivatives with bis-O-(trimethylsilyl)-1,2-diols in the presence of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) as catalyst gave good yields of the spiro, cyclic orthoesters (94). Thus, reaction of 51a with the trimethylsilyl derivatives of ethanediol, and cis-and trans-1,2-cyclohexanediol gave the corresponding orthoesters in 91.7, 89.7, and 63.9% overall yields (95). Furthermore, condensation of 51a with conveniently substituted derivatives of methyl αd-glucopyranoside and methyl αd-mannopyranoside gave the glucopyranosylidene derivatives 96 and 97. Compound 96 was isolated as a single isomer in 72% yield, and compound 97 was actually a mixture of isomers, obtained in 44.8 and 26.6% yields.

Many other 2,3-Od-glycopyranosylidene-αd-mannopyranosides were obtained by the Me3SiOTf-promoted condensation (96) of d-glucono-, d-galactono-, and l-glycero-d-gluco-heptono-1,5-lactones, with methyl 2,3-di-O-trimethylsilyl-αd mannopyranosides having various substituents at C-4 and C-6. The absolute configuration of the orthoester carbon atom for one of the isomers of 2,3-Od-ghicopyranosylidene-αd-mannopyranosides (97), as the fully acetylated derivative, was established by X-ray analysis. The 1H and 13C n.m.r. data for the isomers were also reported (97). The diastereoisomer having the higher values for optical rotation and chemical shift for the orthoester carbon had the (S)-absolute configuration. On the basis of this observation, the configurations for various glycopyranosylidene derivatives were tentatively assigned. Hydrogenation of the benzyl derivatives afforded the free glycopyranosylydene, which showed antihelmintic activity against Ascaridia galli(98).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S0065231808601511

Antibiotics in animal feed and their role in resistance development

Henrik C Wegener, in Current Opinion in Microbiology, 2003

The reduction (or deseletion) of resistance has been most extensively studied for enterococci in food animals. Studies have shown reduced carrier rates of enterococci resistant to glycopeptides, Quinupristin-Dalfopristin, macrolides and evernimicin after the ban on avoparcin, virginiamycin, tylosin, spiramycin and avilamycin (Figure 1) [40,41,42••,43]. A noticeable example of co-selection was documented in Denmark. When avoparcin was banned, initially GRE levels in pig herds did not decline. Only after the ban on macrolide growth-promoters did the levels decline substantially. Investigations showed a genetic linkage between VanA and the macrolide resistance gene ermB in GRE of porcine origin. Thus, the persistence of GRE in pig herds after the ban of glycopeptides could be explained by the genetic link between ermB and vanA and co-selection by use of macrolides for treatment and growth promotion [43,44].

Figure 1. Volumes of active AGP used in food-animals in Denmark and prevalence of Enterococcus faecium resistant to medically important, or potentially important drugs in stool samples from healthy animals at slaughter 1995-2001. Avoparcin (glycopeptide) and Virginiamycin (streptogramin) was used in both pigs and broilers, while Tylosin (macrolide) and Avilamycin (evernimicin) primarily was used in pigs and broilers respectively. Data taken from DANMAP (2002). DANMAP 2001 – Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. http://www.vetinst.dk.

Read full article

URL: 

https://www.sciencedirect.com/science/article/pii/S1369527403001206

Veterinary use and antibiotic resistance

Michael Teuber, in Current Opinion in Microbiology, 2001

VRE carrying the vanA gene [33•] were still prevalent in Norwegian poultry carcasses even three years after avoparcin was banned [43•]. In contrast, Aarestrup et al. [44••] demonstrated the prevalence of glycopeptide-resistant fecal enterococci (E. faecium and E. faecalis) from food animals (broilers and pigs) in Denmark dropped from 72.7% in 1995, the year avoparcin was banned in Denmark, to 5.8% in 2000. Likewise, the prevalence of resistance to the antibiotics avilamycin, erythromycin and virginiamycin dropped after government or self-imposed bans on the use of these antibiotics and tylosin as growth promoters [44••]. This proves that it is possible to reduce the occurrence of antimicrobial resistance in the microflora of national populations of food animals when selective pressure is removed. The same Danish group (M Blom, TL Sorensen, RLPoulsen, N Frimodt-Moller, DL Monnet, FMAarestrup, F Espersen, unpublished data) also presented preliminary results of an ingestion study in which human volunteers consumed vancomycin-resistant E. faecium originally isolated from broiler meat. This random, double-blind study revealed that all six volunteers who consumed milk containing 107 isolates of VRE produced stools containing 4×103–2×107 colony-forming units of VRE per gram of stool after 1–2 days, and five of the six volunteers were still colonized with VRE after six days.

Read full article

URL: 

https://www.sciencedirect.com/science/article/pii/S1369527400002411

Engineering the glycosylation of natural products in actinomycetes

José A. Salas, Carmen Méndez, in Trends in Microbiology, 2007

Sugars in bioactive natural products

Most of the carbohydrate moieties found in natural products belong to the 6-deoxyhexoses (6DOH) family and, so far, >70 different variants have been reported in plants, fungi and bacteria [1]. Usually, carbohydrates are attached to the aglycon through O-glycosidic bonds but some are linked through C— or N-glycosidic linkages (Figure 1). Natural products can be glycosylated with one or more sugar units at different positions: a monosaccharide as in doxorubicin or staurosporine, two monosaccharides as in erythromycin, a disaccharide and a trisaccharide as in mithramycin or a monosaccharide and a trisaccharide as in urdamycin A. The length of the saccharide chain is variable ranging from a single sugar (as in doxorubicin or erythromycin) to longer sugar chains as in landomycin (six sugars), avilamycin (seven sugars) or saccharomicin (seventeen sugars) (Figure 1). Once the sugar is incorporated by the glycosyltransferase, it can be further modified by enzymatic reactions mainly involving methylation or acylation events. For example, all hydroxyl groups in the l-rhamnose moiety in elloramycin are methylated [3] and two acetylation steps on d-oliose and l-chromose B moieties occur as late steps during biosynthesis of chromomycin A3[4].

Biosynthesis of most 6DOH derives from dNDP-activated hexoses (mainly d-glucose) through 4-keto-6-deoxy intermediates [5]. In spite of the structural differences between the members of the 6DOH family, they share two common and early biosynthetic steps leading to the formation of the common intermediate dNDP-4-keto-6-deoxy-d-glucose. These two enzymatic reactions are catalyzed by a dNDP-sugar-1-phosphate nucleotidylyltransferase and a dNDP-d-hexose-4,6-dehydratase, respectively (Figure 2). Structural diversity in this family arises from further modifications of the 4-keto-6-deoxy intermediate through specific enzymatic reactions that affect different carbons of the hexose chain. They include decarboxylations, deoxygenations, transaminations, ketoreductions and C-, N— or O-methylations. Furthermore, the presence or absence of 5- or 3,5-epimerases produces the d— and l-isomers of the different 6DOH. The consequence of different combinations of all these enzymatic activities is the generation of a variety of 6DOH (Figure 3) that contribute to the structural diversity of natural products.

Figure 2. Schematic representation of the pathways for 6DOH biosynthesis, indicating the two early enzymatic steps and the main modifications affecting the different carbons of the hexose carbon chain of the common intermediate NDP-4-keto-6-deoxy-d-glucose.

Figure 3. Structures of some l— and d-6DOH molecules that form part of the natural products synthesized by actinomycetes.

Read full article

URL: 

https://www.sciencedirect.com/science/article/pii/S0966842X07000479

Microbiota and nutrition

Emmanouil Angelakis, in Microbial Pathogenesis, 2017

2.3 Probiotics as growth promoters in agriculture

Much of the information on the use of probiotics for farm animals comes from experimental trials performed by commercial organizations producing or selling probiotics. Although claims regarding the efficacy of probiotics are made for a wide variety of animals, including pets, horses and farm animals, most consumption is in chicken, pigs and cattle (Fig. 2). Different compositions may be more suitable for different animals and the type of probiotic can also be related to the age of the animal.

Fig. 2

Fig. 2. Common farm industry sectors using growth promoters for weight gain.

2.3.1 Lactobacillus sp. probiotics

Following the Metchnikoff studies of Lactobacilli and their use as probiotics, Lactobacilliare are now the most commonly used probiotic bacterial strains. Several experiments have shown significant effects of Lactobacillus probiotic on weight in animals and humans, and these effects vary according to the species [25,26]. Some species were linked to weight gain, whereas others species were associated with weight loss. Meta-analyses revealed that Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus ingluviei administration resulted in significant weight gain whereas Lactobacillus plantarum and Lactobacillus gasseri are associated with weight loss [26]. To date, L. acidophilus, L. fermentum, L. johnsonni, L. paracasei, L. plantarum, L. reuteri, L. rhamnosus and L. salivarius are the most commercialized Lactobacilli [27]. Concentrates of these bacteria are usually freeze-dried, spray-dried, or micro-encapsulated and are typically incorporated into dairy products in humans or in water in animals. Lactobacillus probiotics have been successfully used for the treatment of diarrhea, for irritable bowel syndrome, inflammatory bowel disease, and pouchitis [28]. Many commercial Lactobacilli probiotics products are currently available on the market worldwide and are rapidly gaining in popularity [29,30].

2.3.2 Poultry

The effect of different probiotics on chicken has been extensively investigated. Several Lactobacillus strains have been shown to decrease the population of Salmonella sp., Campylobacter sp. and some other non-beneficial bacterial groups in chicken guts [31]. The most common probiotics used for chickens are yeasts (Saccharomyces boulardii), and bacteria (Lactobacillus spp., Enterococcus spp., Pediococcusspp., Bacillus spp.) targeting the hindgut (caecum, colon) which harbors an abundant and very diverse microbial population, mainly composed of bacteria and archaea. Studies on the beneficial impact on poultry performance have indicated that probiotic supplementation can have positive effects. Probiotics can increase feed efficiency and productivity of laying hens [32], and an improvement in egg quality (decreased yolk cholesterol level, improved shell thickness, egg weight) has also been reported [32]. In some studies, it was found that the growth-promoting effects of probiotic bacteria were equal to or better than treatment with antibiotics in chickens [33–35]. Indeed, following treatment with Lactobacillus sp. probiotics, there was equal weight gain in animals treated with the antibiotic avilamycin [35,36], and better weight gain than in animals treated with chloroxytetracycline [33] or oxytetracycline [34]. Moreover, live weight gains were significantly higher in experimental birds as compared to controls [37,38] (Fig. 3).

Fig. 3

Fig. 3. Increase liver mass in chicken after probiotic treatment.

2.3.3 Ruminants

The most commonly marketed products for ruminants are live yeast (Saccharomyces cerevisiae) preparations. In dairy ruminants, live yeasts have been shown to improve performance, the most consistent effects being an increase in dry matter intake and milk production. Ruminal acidosis is a common digestive disorder in high-producing dairy or beef cattle and is responsible for a decrease in animal performance. In vitro studies have reported that live yeasts could influence the balance of lactate-metabolizing bacteria, by limiting lactate production by Streptococcus bovis and favoring lactate uptake by Megasphaeraelsdenii or Selenomonasruminantium [39]. Moreover, S. cerevisiae could prevent pH decrease by stimulating certain populations of ciliate protozoa [40]. Feed efficiency can also be significantly improved after probiotic feeding [41]. The carcass-based gain/feed ratios also tended to be better for animals receiving the probiotic treatment [42]. Lactobacillus sp. treatment also resulted in higher metabolic activity, lower levels of non-esterified fatty acids, triglycerides, urea, and an increase in alkaline phosphatase and creatine kinase levels [43].

2.3.4 Piglets

During the weaning period, the most promising effects of the use of probiotics are related to the competitive exclusion of pathogenic bacteria. The post-weaning period is characterized by a marked reduction in voluntary feed intake, poor growth and development, diarrhea and an increased risk of disease, particularly from Escherichia coli and Salmonella. Feed intake in pigs is highly variable following weaning. A relationship between feed intake after weaning and villus height has been reported and it was speculated that this relationship may affect the overall efficiency of nutrient capture and utilization [44]. Compared to control groups, weight gain has been reported in piglets after supplementing daily feed with L. casei subsp. casei, L. reuteri, or L. acidophilus (Table 1). The administration of probiotics during the suckling period was more effective in promoting body weight gain than when administered during the weaning period [45]. The feed conversion rate in animals fed with Lactobacillus sp. was also better as they consumed less [46]. Piglets fed with Lactobacillus sp. also had significantly higher Lactobacillus sp. cell counts in their fecal samples [46,47]. Moreover, the higher Lactobacillus sp. and lower E. coli counts in animal feces was associated with a higher animal productivity [48].

Table 1. Lactobacillus sp. used as a growth promoter in productive animals.

Bacteria Animal Bacteria inoculation Duration of treatment Weight gain increase Feed intake Reference
Combination of L. acidophilus, L. salivarius, L. paracaseisubsp. paracasei, L. plantarum, L. lactis, and E. faecium Calves 1 × 109 8-weeks Significant Feed efficiency significantly improved [41]
L. acidophilus Cattle 5xl07 6-weeks Not significant Not significant [42]
L. acidophilus Calves 3xl09 49 days Significant Higher than for the
control group
[45]
L. acidophilus, L. salivarius, and L. reuteri Goats 1 × 1011 Significant Feed efficiency significantly improved [43]
L. reuteri Piglets 1 × 106 or 1 × 108 28 days Significant Feed conversion was better [46]
L. acidophilus Piglets 3xl08 Suckling period Significant No effect on feed conversion [45]
3xl09 Weaning period Significant No effect on feed conversion [45]
L. casei subsp. casei Piglets 1 × 108 Significant No difference [47]
L. acidophilusor a mixture of 12 Lactobacillusstrains Chicks 1–2×109 40 days Significant Feed-to-gain ratios decreased [85]
Mixture of 12 Lactobacillusstrains Chicks 1 × 109 Significant Feed-to-gain ratios decreased [86]
L. fermentumor Lactobacillus subsp. Chicks 1 × 107 1 inoculation Significant Food conversion efficiency improved [87]
Lactobacillus sp. Chicks 1 g/kg 42 days Significant Better food efficiency [34]
Combination of L. reuteri, E. faecium, B. animalis,P. acidilactici, and L. salivarius Chicks 2 × 1012 Significant Feed conversion ratio improved [35]
L. agilis and L. salivarius subsp. salicinius mix Chicks 1 × 106 40 days Significant Not mentioned [88]
L. casei Chicks (0.1% L. casei) 3 weeks Significant Increased [33]
L. caseiand L. acidophilus Chicks “Low and high” dose respectively 6 weeks Significant Increased [89]
Lactobacillus sp. Turkey 1 × 106 3 days Significant Feed conversion ratio decreased [90]
L. acidophilus Mongrel pups 2 × 107 13 weeks Not significant Increased [91]
L. acidophilus, B. subtilis, or both Tilapias 1 × 107 Significant Feed conversion ratio decreased [92]

2.3.5 Aquaculture

A wide variety of Gram-negative bacteria play a role as putative probiotics in aquaculture [49]. Probiotic administrations have been widely applied via water routine or feed additives with either single or a combination of probiotics or even a mixture with prebiotics or other immunostimulants. Probiotic administration varies from direct oral/water routine or feed additives, in which the former is considered the most practical method for prawn probiotics. Normally, probiotics can be added directly into culture water as water additives, bathed in bacterial suspension [50]. Endospore-forming members of Bacillus genera including Bacillus subtilis are commonly used in aquaculture [50]. Moreover, several yeasts have been proven to provide benefits to aquatic animals. Saccharomyces cerevisiae has been recognized to have potential as a substitute for live feed production of fish whereas the marine yeast Yarrowialipolytica has improved the survival and growth of pearl oysters [50]. However, appropriate probiotic levels depend on the probiotic species, fish species and their physiological status, rearing conditions and specific goal of the applications.

Read full article

URL: 

https://www.sciencedirect.com/science/article/pii/S0882401015301881

Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets

Adam J. Schaenzer, Gerard D. Wright, in Trends in Molecular Medicine, 2020

rRNA Methyltransferases in Antibiotic Resistance

Ribosome-targeting antibiotics are among the most diverse antibiotics, with eight distinct chemical classes in clinical use. These antibiotics target different and sometimes overlapping regions of the ribosome, thus inhibiting various steps of protein translation (reviewed in [82]). Bacteria have developed resistance to many of these antibiotics via ribosome modification, most notably through methylation of rRNA. Methylation of strategic nucleotides in the antibiotic binding site weakens the binding of the antibiotic through steric clashes with the modified nucleotide. Since some antibiotics share partially overlapping binding sites, methylation of a single nucleotide can result in resistance to multiple antibiotic classes (Table 1) [83,84].

Table 1. rRNA Methyltransferases in Antibiotic Resistance

Family (name) rRNA target Nucleotidea Position methylated Resistance phenotype
Kgm 16S G1405 N7 4,6-Aminoglycosides
Kam 16S A1408 N1 4,6- and 4,5-Aminoglycosidesb
Arm 16S G1405 N7 4,6-Aminoglycosides
Pam 16S A1408 N1 4,6- and 4,5-Aminoglycosidesb
Erm (ErmC) 23S A2058 N6, N6c MLSB
Erm (ErmN) 23S A2058 N6 Lincosamides, tylosind
(RlmAII) 23S G748 N1 Tylosind
(EmtA) 23S G2470 N1 Orthosomycins
(AviRa) 23S G2535 N1 Orthosomycinse
(AviRb) 23S U2479 2′-O-ribose Orthosomycinse
(Tsr) 23S A1067 2′-O-ribose Thiostrepton
(Cfr) 23S A2503 C8 PhLOPSA
(TlyA) 16S, 23S C1409, C1920 2′-O-Ribosef Tuberactinomycins
(KsgA) 16S A1518, A1519 2′-O-Ribosef Kasugamycin
a
Escherichia coli numbering.
b
Gentamicin is an exception.
c
ErmC dimethylates N6.
d
Tylosin resistance occurs only when both ErmN and RlmAII are active.
e
Orthosomycin resistance occurs only when both AviRa and AviRb are active.
f
Absence of methylation by TlyA or KsgA leads to respective resistance phenotypes.

All known rRNA methyltransferases utilize the methyl donor S-adenosyl-L-methionine (SAM) to methylate the nitrogenous base or 2′-O-ribose of the target nucleotide [85]. However, these enzymes use different chemical mechanisms to catalyze the reaction depending on the nature of the atom to be methylated. Structurally, the N-methyltransferases and 2′-O-methyltransferases described below are class I methyltransferases; they possess a conserved Rossmann-fold C-terminal methyltransferase domain that binds the SAM substrate and a variable N-terminal domain used to recognize its RNA target [86]. By contrast, the radical SAM methyltransferases possess a C-terminal methyltransferase domain with an α66 partial barrel core; at one end of the barrel rests a [4Fe–4S] iron–sulfur cluster coordinated by a CX3CX2C motif [87]. Like the class I methyltransferases, radical SAM methyltransferases possess a variable N-terminal domain that binds RNA.

16S rRNA Methyltransferases

16S rRNA methyltransferases are N-methyltransferases, usually methylating N7 of guanine and N1 of adenine (Figure 4A) (reviewed in [88]). Evidence suggests that an SN2 mechanism is the likely mechanism of action for these enzymes, with the purine nitrogen attacking the methyl group of SAM releasing S-adenosyl-L-homocysteine (SAH) as the leaving group [89,90]. 16S rRNA methylation occurs on two nucleotides in the ribosome decoding center, G1405 and A1408 [88]. In general, methylation of N7 on G1405 grants resistance to 4,6-disubstituted aminoglycosides, while methylation of N1 on A1408 grants resistance to both 4,6- and 4,5-disubstituted aminoglycosides, except for gentamicin.

Figure 4

Figure 4. Resistance by Ribosome Methylation Can Be Overcome.

(A) Structures of nucleosides displaying methylations that affect antibiotic resistance. Abbreviation: MT, methyltransferase. (B) Left: Structure of linezolid (yellow ball and sticks) bound to the peptidyl transferase center of the Deinococcus radiodurans 50S ribosome. Linezolid interacts with A2503 (cyan ball and sticks; Escherichia coli numbering) and is unable to bind when A2503 C8 (broken circle) is methylated. Based on PDB file 3DLL. Right: Comparison of linezolid and tedizolid structures. The C5 substituent (highlighted red) dictates the ability of the compound to bind in the presence of methylated A2503. (C) Structures of ErmC inhibitors from [112–114]. Where noted, the mechanism of inhibition is relative to the substrate S-adenosyl-L-methionine (SAM).

Intriguingly, the 16S rRNA methyltransferases identified in aminoglycoside producers show low sequence identity with those circulating in pathogenic strains [91]. Aminoglycoside producers possess two families: the Kgm family (KgmB, Sgm, GrmA, etc.) and the Kam family (KamA, KamB, and KamC), which methylate G1405 and A1408, respectively. By contrast, pathogenic bacteria have acquired two families independent of those from the aminoglycoside producers. The Arm family of methyltransferases comprises six members (ArmA and RmtA through RmtE), which methylate G1405 and thus produce an aminoglycoside resistance phenotype like that of the Kgm family [92,93]. The second family, the Pam family, currently comprises solely NpmA, which methylates A1408 like Kam methyltransferases [94]. Regardless of the family, methylation at either nucleotide drastically hinders the therapeutic use of aminoglycosides.

23S rRNA Methyltransferases

Unlike 16S rRNA methyltransferases, the 23S rRNA methyltransferases are more mechanistically diverse, comprising N-methyltransferases, radical SAM methyltransferases, and 2′-O-ribose methyltransferases. Except for the radical SAM methyltransferases, these enzymes are likely to facilitate an SN2 mechanism for methylation of their nucleophilic targets [95,96]. Methylation of the 23S rRNA affects resistance against ten different antibiotic classes depending on the location and combination of methylation sites (Table 1). In many cases, a single methylation can cause resistance to multiple antibiotic classes due to the extensive overlap in their binding sites.

N-Methylations are the most numerous of the 23S rRNA modifications. One of the most well-known families is the Erm N-methyltransferases, which methylate the N6 position of A2058 at the mouth of the peptide exit tunnel [97]. Some Erm methyltransferases, such as ErmN monomethylate A2058, lead to robust lincosamide resistance and low-to-moderate resistance to macrolide and streptogramin B antibiotics, although they offer no resistance to the subset of macrolides known as the ketolides [98]. Others, such as ErmC dimethylate A2058, which creates strong resistance to all three classes (the ‘MLSB’ phenotype), including the ketolides [84]. Intriguingly, ErmN also confers strong resistance to the macrolide tylosin when found in conjunction with the N-methyltransferase RlmAII, which methylates G748 [99]. Finally, resistance to the orthosomycins avilamycin and evernimicin occurs through methylation of G2470 and G2535 by EmtA and AviRa, respectively. However, the latter is only effective if 2′-O-ribose methylation of U2497 by AviRb is also present [100].

Although less prevalent in the clinic, 2′-O-ribose methylation also plays a role in resistance to certain antibiotics (Figure 4A and Table 1). Two such cases exist, both used as intrinsic resistance mechanisms in the producer of the affected antibiotic: AviRb and Tsr. As noted above, AviRb (in conjunction with AviRa) is crucial for orthosomycin resistance. By contrast, Tsr protects the thiostrepton producer Streptomyces azureus from self-intoxication via ribose methylation of A1067, a nucleotide in the ribosome’s GTPase center [85,101]. While neither thiostrepton nor the orthosomycins are currently used in human medicine, their resistance mechanisms may affect any future antibiotic that targets similar binding sites.

Unlike the N-methyltransferases and 2′-O-methyltransferases, the radical SAM methyltransferases do not utilize an SN2 mechanism to methylate their targets. Instead, they require the generation of a free radical to methylate relatively inert carbons. To date, only a single radical SAM methyltransferase, Cfr, is associated with antibiotic resistance [102]. Like other radical SAM methyltransferases, Cfr uses two SAM molecules to perform the methylation: the first to methylate a conserved cysteine in the active site and the second as a source for a 5′-deoxyadenosine radical. The radical is passed from 5′-deoxyadenosine to the methylated cysteine, which subsequently attacks the target nucleotide, ultimately transferring the methyl group [103]. Cfr methylates the C8 position of A2503 in the peptidyl transferase center, resulting in resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (the ‘PhLOPSA’ phenotype) [83]. Alarmingly, Cfr is readily mobile within pathogens and has recently been found in the same operon as the ErmB methyltransferase [104,105]; such a combination renders the ribosome resistant to all clinically relevant 50S ribosome-targeting antibiotics.

Resistance through the Loss of Methylation

In some instances, antibiotic resistance can occur via loss of endogenous methylation. The tuberactinomycin antibiotics capreomycin and viomycin bind at the interface of the 30S and 50S subunits in the intact ribosome, and ribose methylation of 16S rRNA C1409 and 23S rRNA C1920 is required for their antimycobacterial activity [106]. Inactivating mutations in the tlyA gene result in the loss of both methylations and the generation of capreomycin resistance in Mycobacterium tuberculosis [107]. In another example, inactivation of KsgA abolishes methylation of A1518 and A1519 in the 16S rRNA, leading to low-level kasugamycin resistance. Intriguingly, KsgA inactivation also dramatically accelerates the emergence of secondary high-level kasugamycin resistance [108]. Resistance via loss of methylation may prove to be challenging to overcome as it is the loss of an enzyme rather than the acquisition of a targetable resistance enzyme.

Overcoming Methylation-Dependent Resistance

Since methylation typically causes resistance by steric clashes with the antibiotic, one strategy to overcome this mechanism is by designing antibiotics that avoid the methylated nucleotide. The recently approved oxazolidinone tedizolid was designed with a shorter C5 substituent on its oxazolidinone ring relative to its predecessor linezolid (Figure 4B); this modification accommodates the methylation of A2503 and thus retains activity against cfr+ pathogens [109]. Another example is the ketolide telithromycin, which extends deeper into the peptide exit tunnel than the macrolides, allowing more extensive interaction with the 23S rRNA [110]. Increased interactions with the rRNA enable telithromycin to overcome resistance induced by monomethylation of A2058 [111]. Unfortunately, telithromycin is unable to overcome resistance caused by dimethylation of A2058.

In the cases of a single methylation causing multidrug resistance, it may be more pragmatic to target the methyltransferase itself, thus salvaging multiple antibiotic classes by inhibiting a single enzyme. ErmC has gained considerable attention in this regard due to the robust MLSB phenotype [112–114]. Clancy et al. performed a traditional high-throughput screen of synthetic compounds against purified ErmC. Their most potent hit, UK-105730, has an IC50 of 0.45 μM and demonstrated superior selectivity against other methyltransferases (IC50 > 1 mM) (Figure 4C). Hajduk et al. also utilized a synthetic screen approach, but instead screened small-molecule fragments for enzyme binding by NMR followed by an extensive medicinal chemistry regimen to build on the hits. Their efforts yielded a 2-amino-4-(aminoindanyl)-1,3,5-triazine scaffold, the best of which showed a Ki of 4 μM and 10 μM against ErmAM and ErmC, respectively (Figure 4C). Finally, Foik et al. performed an in silico screen followed by in vitro experimentation to identify inhibitors that would bind both the SAM-binding pocket and the rRNA-binding pocket. Intriguingly, they identified a family of three related compounds that possessed different modes of inhibition (competitive, noncompetitive, and uncompetitive) (Figure 4C). Unfortunately, to date none of the identified Erm inhibitors have demonstrated rescue of macrolide activity in a mouse model of infection when tested.

Read full article

URL: 

https://www.sciencedirect.com/science/article/pii/S1471491420301301

Понравилась статья? Поделить с друзьями:
  • Al shams глазные капли инструкция по применению
  • Швейная машинка dragonfly 218 инструкция по применению
  • Атлант средство от тараканов инструкция по применению
  • Тилометрин инструкция по применению в ветеринарии
  • Что такое мануал диска