Мануал на датчики двигателя

Работа всех систем и узлов современного автомобиля контролируется электронным блоком управления (ЭБУ). Это прежде всего касается такого сложного агрегата как двигатель внутреннего сгорания, работа которого согласовывается электроникой. Но для нормальной работы ЭБУ должен получать соответствующие данные, которые снимаются с датчиков, установленных непосредственно в моторе автомобиля.

все датчики двс

Зачем нужны датчики в моторе?

Различные производители предлагают свои датчики, но со временем выработался определенный перечень, который можно встретить практически в любом двигателе внутреннего сгорания с инжекторной топливной системой.

Некоторые из этих датчиков доносят информацию о текущем состоянии двигателя в ЭБУ и водителю на приборную панель, а при поломке некоторых из них, например, ДПКВ, автомобиль попросту не заведется.

Подробнее о работе датчиков

Каждый датчик собирает информацию и подает ее на ЭБУ, что позволяет обеспечить бесперебойную работу двигателя и предоставить исчерпывающую информацию о его состоянии. Для этого требуется понять, для чего устанавливается каждый датчик и за что он отвечает.

ДМРВ

дмрв

Датчик массового расхода воздуха устанавливается во впускном воздушном канале, между воздушным фильтром и дроссельной заслонкой. Его основная функция – измерение количества поступающего в двигатель воздуха. Согласно показаниям ДМРВ электронным блоком управления высчитывается оптимальное количество топлива, соответствующее объему поступившего в двигатель воздуха. ЭБУ подает команду на форсунки, через которые и поступает необходимое количество топлива.

ДПДЗ

дпдз

Датчик положения дроссельной заслонки располагается непосредственно на заслонке, обязательно до впускного коллектора. Он указывает на положение заслонки в каждый момент времени и динамике его изменения. Положение дроссельной заслонки, в свою очередь, изменяется при нажатии педали газа водителем. Исходя из показаний этого датчика ЭБУ обеспечивает увеличение или снижение интенсивности подачи топлива в камеры сгорания, мотор набирает или снижает обороты. При полностью закрытой заслонке, подача воздуха происходит через регулятор холостого хода, а количество подаваемого топлива снижается.

ДПКВ

дпкв

Датчик положения коленчатого вала располагается в непосредственной близости возле шкива коленвала. Его задача определять положение и скорость вращения вала в текущий момент времени. Для обеспечения работы ДПКВ на шкиве устанавливается специальный зубчатый диск с несколькими убранными зубами, что позволяет четко определять положение коленчатого вала. В разных двигателях датчик может находиться в других местах, но обязательно в непосредственной близости от коленвала, например, возле маховика. Данные передаваемые датчиком положения коленчатого вала на ЭБУ позволяют точно определить такт впрыска топлива и угол опережения зажигания, они же являются основой для выдачи информации об оборотах двигателя на тахометре.

ДПРВ

дпрв

Датчик положения распределительного вала находится около головки блока цилиндров возле распредвала. ДПРВ определяет его положение в реальном времени, в самом простом исполнении он подает сигнал, когда поршень первого цилиндра выходит в верхнюю мертвую точку (такт сжатия). На основе этих данных ЭБУ подает команду на впрыск топлива в определенный цилиндр и зажигание.

ДД

датчик детонации

Датчик детонации в большинстве двигателей установлен в верхней части блока цилиндров, возле камер сгорания, как правило, между 2 и 3 цилиндрами. Его задача улавливать металлический стук, образующийся в цилиндрах при детонации топлива, которая может серьезно повредить двигатель. Поступающая от датчика информация позволяет ЭБУ устанавливать нужный угол опережения, убирая ненужный эффект.

ДТОЖ

дтож

Датчик температуры охлаждающей жидкости расположен в части двигателя, где охлаждающая жидкость выходит из него, чаще всего это головка блока цилиндров или термостат. ДТОЖ указывает на температуру тосола, что влияет на работу двигателя после запуска. Если температура низкая, ЭБУ дает команду повысить холостые обороты за счет обогащения топливно-воздушной смеси и корректировки угла опережения зажигания. После набора рабочей температуры подается команда снизить обороты. При повышении значения рабочей температуры датчик подает сигнал, включающий вентиляторы охлаждения радиатора, кроме того, данные по температуре охлаждающей жидкости отражаются на приборной панели.

ДК

датчик кислорода

Датчик кислорода установлен в выхлопной системе в выпускном коллекторе или за ним, но до катализатора. Иногда дополнительный датчик устанавливается уже после катализатора. Они оценивают концентрацию кислорода в выхлопном газе. Первый датчик определяет количество кислорода на выходе из двигателя, второй – на выходе из катализатора, его называют диагностическим. По данным первого датчика блок управления обогащает или обедняет топливно-воздушную смесь, в зависимости от того, сколько кислорода осталось в выхлопных газах. Диагностический ДК указывает на эффективность катализатора, одновременно корректируя подачу топлива.

ДСА

датчик скорости

Датчик скорости автомобиля в большинстве случаев располагается в верхней части коробки передач. Он изменяет скорость вращения валов после изменения передаточного числа коробки передач (переключения скорости). Это позволяет определить частоту вращения колес, а значит, скорость автомобиля. Популярный способ измерения – считывание данных с зубчатого венца, установленного на дифференциале. В некоторых автомобилях в качестве ДСА выступает датчик АБС возле колеса, которые считывает данные с зубчатого венца, установленного на ШРУСе. Информация о скорости автомобиля поступает на ЭБУ, который корректирует подачу топлива, а также на спидометр.

ДДМ

датчик давления масла

Датчик давления масла, в зависимости от конструкции двигателя, может располагаться возле масляного фильтра или в дальней точке – головке блока цилиндров. Он определяет давления масла к системе смазки мотора. Показания ДДМ никак не влияют на работу двигателя, но при падении давления масла, проблему нужно срочно решать поскольку двигатель быстро выйдет из строя и потребуется дорогостоящий ремонт. Об этом просигнализирует предупреждающая лампочка на приборной панели.

ДТВВ

датчик температуры всасываемого воздуха

Датчик температуры всасываемого воздуха часто располагается в одном корпусе с ДМРВ или отдельно в системе впуска. По температуре всасываемого воздуха ЭБУ вычисляет его плотность, регулируя подачу топлива для достижения нужного обогащения топливно-воздушной смеси.

Дополнительные датчики

ДАД

датчик абсолютного давления

Датчик абсолютного давления находится во впускном коллекторе или закрепляется на автомобильном кузове, соединяясь с впускным коллектором гибкой трубочкой. Задача ДАД  – измерение давления во впускном коллекторе. На основе этих данных ЭБУ рассчитывает расход воздуха двигателем, образуя идеальные параметры топливно-воздушной смеси. Фактически, он заменяет ДМРВ, но иногда работает с ним в паре, сообщая дополнительную информацию.

ДНД

датчик неровной дороги

Датчик неровной дороги прикрепляется к кузову возле крепления одного из амортизаторов. Он улавливает колебания в вертикальной плоскости при движении автомобиля, определяя, что он двигается по неровной дороге. Данный от датчика поступают в блок управления и он  отключает функцию диагностики пропусков зажигания, которая работает при неравномерном вращении коленвала.

Если какой-либо из датчиков неисправен, ЭБУ дает команду перехода в аварийный режим работы. При этом недостающая информацию заменяется усредненными данными, вшитыми в его память. Это не касается ДПКВ, при котором двигатель не работает. О том, что какой-то датчик вышел из строя предупреждает лампочка, загорающаяся на приборной панели с надписью CHECK или CHECK ENGINE. Чтобы понять, что именно происходит с автомобилем, требуется провести компьютерную диагностику ЭБУ.

Видео: Датчики ДВС

Датчики электронной системы управления двигателем

Размещено: 11 марта 2015

Просмотров: 17 404

Комментариев: 0

На современных автомобилях российского и импортного производства используется инжекторная система подачи топлива. Чтобы обеспечить оптимальный режим работы двигателя и своевременную подачу необходимой топливно-воздушной смеси в цилиндры, используются специальные датчики, которые подают сигнал на электронный блок управления (или «ЭБУ»). А он, в свою очередь, анализируя полученные сигналы, принимает решение о том или ином порядке действий. В совокупности датчики и электронный блок управления образуют электронную систему управления двигателем, или инжектор. Более конкретно остановимся на функциях каждого датчика.

Датчик температуры охлаждающей жидкости

Датчик температуры охлаждающей жидкости

Он установлен в патрубке головки блока цилиндров и представляет собой термистор – резистор, способный изменять свое электрическое сопротивление под воздействием температуры. ЭБУ анализирует величину сопротивления (точнее падение напряжения) на датчике и, исходя из этого, отдает необходимые команды системе питания. Особенно это заметно при пуске двигателя в холодную погоду. Наверное, вы не раз обращали внимание на повышенные обороты коленчатого вала при прогреве двигателя.

Датчик детонации: что это

Датчик детонации

Этот датчик вмонтирован в верхнюю часть блока цилиндров. Его функция – улавливание детонационных стуков в цилиндрах ДВС. Чем сильнее стуки, тем более интенсивно генерируются импульсные напряжения на датчике, которые считываются электронным блоком управления.

Датчик массового расхода воздуха

Датчик массового расхода воздуха

Он устанавливается на воздушном рукаве системы фильтрации. Датчик изменяет сигнал путем увеличения или уменьшения напряжения в зависимости от количества проходящего через него воздуха. Помимо этого, в датчик встроен еще один датчик – датчик температуры воздуха. Он представляет собой термистор, как и датчик температуры охлаждающей жидкости. При выходе датчика из строя на панели приборов загорается сигнальная лампа «CHECK ENGINE», и ЭБУ принимает решения на основе фиксированного значения температуры воздуха, равного 33 градусам Цельсия.

Датчик скорости

Датчик скорости

Он монтируется в коробку передач автомобиля и вырабатывает 6 импульсов каждый 1 метр пробега машины. Анализируя количество импульсов, электронный блок управления определяет скорость движения машины.

Датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки

Он устанавливается на дроссельном узле и жестко фиксируется на оси вращения дроссельной заслонки. При нажатии на педаль акселератора датчик изменяет свое напряжение. Чем сильнее нажатие на педаль, тем сильнее отклоняется заслонка и тем больше увеличивается выходное напряжение датчика. Получая эту информацию, ЭБУ увеличивает количество впрыскиваемого форсунками топлива, и двигатель начинает набирать обороты. Датчик воспринимает закрытую заслонку как нулевую отметку. В этом случае количество подаваемого воздуха в обход заслонки зависит от положения электромагнитного клапана регулятора холостого хода, установленного также в дроссельном узле.

Датчик положения коленчатого вала

Датчик положения коленчатого вала

Устанавливается на крышке масляного насоса напротив шкива привода генератора и определяет частоту вращения коленчатого вала двигателя. На шкив генератора нанесены специальные зубья (58 зубьев. Два зуба срезаны для формирования специального импульса синхронизации, связанного с положением поршней 1 и 4 цилиндра в верхней мертвой точке) . Проходя через датчик, зубья попадают в магнитное поле датчика. На основе этого датчик формирует специальные импульсные сигналы переменного тока, которые поступают в электронный блок управления. Анализируя полученные данные, ЭБУ делает вывод о частоте вращения коленчатого вала.

Датчик концентрации кислорода (лямбда зонд)

Датчик концентрации кислорода лямбда зонд

Устанавливается на приемной трубе системы выпуска отработавших газов. Датчик функционирует при температуре не ниже 300 градусов Цельсия. Поэтому для быстрого его нагревания в него встроен нагревательный элемент. Взаимодействуя с кислородом, попадающим в систему выпуска, датчик посылает определенные сигналы на электронный блок управления, который создает поправочные команды для изменения концентрации топливно-воздушной смеси. Форсунки воспринимают импульс от электронного блока управления и изменяют величину впрыскиваемого во впускной коллектор количества топлива.

Датчик фаз

Датчик фаз

Устанавливается на заглушке головки блока цилиндров. На распределительном валу имеется специальный металлический выступ – штифт, который проходит через магнитное поле датчика. Исходя из этого, датчик формирует специальный сигнал низкого напряжения. Сигнал по времени совпадает со временем нахождения поршня 1 или 4 цилиндра в верхней мертвой точке. Необходим для того, чтобы электронный блок управления своевременно отдавал команды форсункам на впрыскивание необходимого количества топлива.

Анализируя сигналы от каждого датчика, электронный блок управления принимает оптимальное решение, касательно режимов работы двигателя автомобиля. Все это обеспечивает надежную работу всех систем и агрегатов, а также увеличивает эксплуатационные характеристики деталей и узлов машины.

В статье описаны основные датчики автомобиля, их типы и параметры, а также принцип действия, устройство и назначение датчиков. В современном автомобиле используют разные по конструкции датчики. Являясь «органами восприятия» автомобилей, датчики превращают различные входные величины в электрические сигналы, которые используются блоками управления систем управления двигателем, обеспечения безопасности и комфорта для функций управления и регулирования.

Применение в автомобиле в качестве периферийных устройств датчики образуют интерфейсы между автомобилем с его сложными функциями силового агрегата, тормозов, шасси, обеспечения комфорта и безопасности, а также навигации и цифровым электронным блоком управления в качестве обрабатывающего устройства.

Как правило, адаптивное переключение переводит сигналы датчиков в требуемую для блока управления стандартизированную форму. Из-за разнообразия контролируемых параметров, имеющих разные физические величины, устройство и принципы работы датчиков автомобиля различаются.

Autopiter

Датчики автомобиля: устройство и назначение

Понятие «датчик» по своему значению равнозначно понятиям ”сенсор”, «зонд» и «чувствительный элемент». Датчики автомобиля преобразуют физические или химические (по большей части, неэлектрические) величины с учетом возмущающих воздействий в электрическую величину. Это зачастую также происходит через другие неэлектрические промежуточные этапы. В качестве электрических величин здесь действуют:

  1. Ток и напряжение.
  2. Амплитуды тока/напряжения.
  3. Частота.
  4. Период.
  5. Фаза.
  6. Длительность импульса электрического колебания.

В качестве электрических параметров здесь действуют:

  1. Сопротивление.
  2. Емкость.
  3. Индукция.

Работа датчиков автомобиля контролируются блоками управления соответствующей системы. При возникновении неисправностей датчиков информация об этом сохраняется в блоке управления в виде кодов неисправности. Диагностика датчиков автомобиля осуществляется с помощью анализа показаний, измерения физических параметров и проверки достоверности сигналов.

Неисправности в системах и их причины должны, прежде всего, определяться с помощью диагностики на базе признака неисправности (направленная диагностика). В статье для наглядности, а также для лучшего понимания функционирования датчиков приводятся таблицы и схемы с данными и значениями.

Величина значений указана для деталей фирмы Visteon – это крупный производитель, который изготавливает большое количество продукции для автомобилестроительных компаний, таких как: Ford, General Motors, Chrysler, Volvo, Nissan, Renault, Volkswagen, Hyundai, Audi и др. Значения параметров не заменяют данные в актуальной литературе для станций технического обслуживания.

Датчик температуры отработавших газов

Место установки зонда в системе выпуска ОГ перед катализатором или за ним. В автомобилях с турбонаддувом устанавливается рядом с турбонагнетателем в обратном или выпускном трубопроводе.

Датчик отработавших газов

Физический принцип действия: PTC (положительный температурный коэффициент) резистор или NTC (отрицательный температурный коэффициент) резистор.

Назначение/принцип действия: измеряет температуру отработавших газов. В зависимости от температуры отработавших газов изменяется сопротивление, а следовательно, падение напряжения на зонде.

Температура, °C Сопротивление, Ом Напряжение, В
-40 460467979 5,000
-20 102719922 5,000
0 28547913 5,000
10 16106769 5,000
20 9449513 4,999
50 2326245 4,998
100 371255 4,987
150 91432 4,946
200 30282 4,840
250 12389 4,627
300 5924 4,278
400 1772 3,196
500 724 2,100
600 363 1,332
700 207 0,857
800 131 0,579
900 89 0,409
1000 64 0,303

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,2 – 4,8 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Датчик температуры воздуха на впуске (IAT)

Место установки во впускном тракте – на корпусе воздушного фильтра или за ним. Это зависит от конструкции автомобиля. Физический принцип действия NTC-резистор. IAT измеряет текущую температуру воздуха на впуске.

Датчик температуры подаваемого воздуха

В зависимости от температуры воздуха на впуске изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала – постоянное напряжение: 0,2 – 4,5 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Температура, °C Сопротивление, кОм Напряжение, В
– 40 860 – 900 4,51 – 4,54
– 30 501 – 645 4,46 – 4,49
– 20 253 – 289 4,31 – 4,35
– 10 170 – 196 4,17 – 4,23
0 89 – 102 3,82 – 3,92
10 62,0 – 70,0 3,5 – 3,7
20 35,0 – 40,0 3,0 – 3,2
30 25,0 – 28,0 2,6 – 2,8
40 15,0 – 17,0 2,0 – 2,2
50 11,0 – 13,0 1,7 – 1,9
60 7,1 – 8,0 1,2 – 1,4
70 5,0 – 6,2 0,9 – 1,2
80 3,0 – 4,5 0,6 – 0,9
90 2,4 – 3,5 0,5 – 0,7
100 1,9 – 2,5 0,4 – 0,5
110 1,5 – 1,7 0,3 – 0,4
120 1,0 – 1,3 0,2 – 0,3

IAT часто интегрирован в следующие узлы: в датчик MAF (массовый расход воздуха) (в этом случае обозначается как MAFT (массовый расход и температура воздуха)) и в датчик MAP (абсолютное давление в коллекторе) (в этом случае обозначается как MAPT (температура и абсолютное давление во впускном коллекторе)).

Свойства интегрированного IAT идентичны свойствам отдельного зонда IAT. В некоторых системах сигнал IAT используется также для расчета температуры электролита аккумуляторной батареи.

Датчик атмосферного давления (BARO)

Место установки: BARO интегрирован в PCM. В некоторых автомобилях устанавливается в салоне, за панелью приборов, на кронштейне усилителя передней стойки.

Датчик атмосферного давления

Физический принцип действия: упругая мембрана с тензорезисторами. BARO измеряет атмосферное давление. В зависимости от атмосферного давления изменяется сопротивление, а следовательно, и падение напряжения на зонде.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 2,2 – 4,4 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии). При установке BARO в модуле PCM, цифровым мультиметром проверить невозможно. Параметры BARO в одних системах отображается в регистраторе данных в миллибарах (мб), в других – в герцах (Гц).

В некоторых системах значение BARO отображается в регистраторе данных, хотя датчик BARO не установлен. Это значение рассчитывается PCM.

Давление должно оставаться постоянным, независимо от режима работы двигателя/режима движения автомобиля, оно может пропорционально изменяться только при соответствующем изменении положения автомобиля относительно уровня моря (чем выше, тем ниже давление).

Датчик температуры наружного воздуха

Датчик наружной температуры установлен в передней части автомобиля, за бампером. Физический принцип действия: NTC-резистор. Измеряет температуру воздуха снаружи автомобиля.

Датчик температуры воздуха

В зависимости от температуры наружного воздуха изменяется сопротивление, а следовательно, и падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт.

Температура, °C Сопротивление, кОм
-40 примерно 9,8
-30 ок. 9,0
-20 примерно 7,9
-10 ок. 6,6
0 примерно 5,2
5 примерно 4,5
10 примерно 3,9
15 примерно 3,3
20 примерно 2,8
25 примерно 2,4
30 примерно 2,0
40 ок. 1,4
50 ок. 0,9
60 ок. 0,7
65 ок. 0,6

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Акселерометр (датчик поперечного/продольного ускорения)

Место установки на панели пола в салоне на продольной или соответственно поперечной оси. Физический принцип действия: емкостной.

Акселерометры измеряют ускорение автомобиля в продольном или соответственно поперечном направлении. Чем больше зарегистрированное датчиком ускорение, тем больше сигнал.

Акселерометр

Акселерометры непрерывно проверяются модулем ABS (антиблокировочная система тормозов)/системы поддержания курсовой устойчивости. При проверке акселерометра с помощью регистратора данных необходимо помнить, что датчик регистрирует и отображает малейшее сотрясение.

Рабочий диапазон: напряжение питания примерно 12 вольт. Тип сигнала: цифровой протокол CAN 5 вольт. Частота 500 Kбит/с.

При неисправности заносится код ошибки. Проверяется направленной диагностикой (при наличии). Возможна только общая проверка работоспособности. Оценка сигналов с помощью компьютерной диагностики невозможна.

Сигнал акселерометра

В автомобилях старых моделей акселерометр может быть установлен как отдельный узел. В некоторых системах после замены акселерометра может возникнуть необходимость его калибровки.

Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик износа тормозных колодок

Место установки на тормозной колодке (только дисковые тормоза). Физический принцип действия: омическое сопротивление.

Датчик тормозных колодок

Датчик износа тормозных колодок состоит из маленькой проволочной петли, встроенной в тормозную накладку внутренней тормозной колодки.

Когда фрикционный слой тормозной накладки износится до определенной степени, это приведет, в зависимости от системы:

  • A: к разрыву электрической цепи соединения с массой;
  • B: к замыканию на массу.

Опорное напряжение примерно 5 В. Тип сигнала: ВКЛ/ВЫКЛ. Сопротивление меньше 0,5 Ом, проволочная петля не разорвана; > 10 кОм, проволочная петля разорвана.

Проверка возможна цифровым мультиметром DMM. На автомобилях старых моделей в схему могут быть включены сопротивления, отображающие прерывание подачи напряжения с помощью различных индикаторов в комбинации приборов (контрольная лампа мигает или горит постоянно).

Датчик давления в тормозной системе

Место установки: в зависимости от модификации установленного модуля ABS/системы поддержания курсовой устойчивости сенсоры давления устанавливаются снаружи на главном тормозном цилиндре или в HCU.

Датчик давления тормозов

Физический принцип действия: емкостной, пьезо или мембранные сенсоры с тензорезисторами.

Назначение/принцип действия: измеряет давление в гидравлическом тормозном контуре. Сенсор генерирует электрический сигнал, пропорциональный давлению.

Рабочий диапазон: напряжение питания примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт. Датчик давления непрерывно проверяется модулем ABS/системы поддержания курсовой устойчивости автомобиля.

Сигнал датчика давления

На диаграмме вид сигнала давления в тормозной системе при двукратном нажатии педали тормоза (отображение на экране регистратора данных).

Увеличение гидравлического давления на поршень приводит к перемещению подпружиненной подвижной пластины емкостного датчика давления.

Емкостной датчик давления

Вызванное этим изменение емкости регистрируется и анализируется модулем ABS/системы поддержания курсовой устойчивости. При неисправности заносится код ошибки. Проверяется направленной диагностикой (при наличии). Мультиметром проверяется только не интегрированный в HCU датчик.

Пьезоэлектрический датчик давления состоит из пьезоэлемента, связанного через мембрану с тормозным контуром.

Пьезоэлектрический датчик

При росте давления в тормозной системе мембрана деформирует пьезоэлемент, что приводит к изменению напряжения на его электродах. Величина изменения напряжения анализируется модулем ABS/системы поддержания курсовой устойчивости.

Интегрированные в HCU сенсоры давления нельзя заменить отдельно. В некоторых системах сенсоры необходимо откалибровать после замены. Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик положения педали тормоза

Место установки на главном тормозном цилиндре (только в автомобилях с системами ABS открытого типа). Физический принцип действия: выключатель со скользящим контактом.

Датчик педали тормоза

Назначение/принцип действия: определяется положение педали тормоза. Датчик положения педали тормоза имеет две дорожки скольжения. Одна из дорожек разделена на семь сегментов, при этом каждый сегмент соединен через сопротивление с одним из двух электрических контактов разъема.

Другая дорожка скольжения сплошная, она подключена ко второму контакту разъема. В зависимости от положения педали сопротивления поочередно включаются с помощью скользящего контакта.

Устройство датчика педали

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

Датчик удара (датчик ускорения)

На разные автомобили устанавливается от одного до пяти датчиков удара. Для разных подушек безопасности сенсоры устанавливаются в различных частях авто: в передней части автомобиля (передняя подушка безопасности), на днище автомобиля в области средней стойки (боковая подушка безопасности), на задней стойке (верхняя подушка безопасности при наличии более двух рядов сидений) или в модуле SRS (вспомогательная удерживающая система подушек и ремней безопасности).

Датчик удара

Физический принцип действия: пьезо или емкостной. Сенсоры измеряют, в зависимости от места применения, поперечное или продольное ускорение автомобиля. В датчик встроен электронный блок обработки данных. В соответствии с ускорением передает в модуль SRS цифровые кодированные данные удара.

Датчики удара нельзя проверить в условиях сервиса. Можно проверить только жгут проводов. Обозначаются как ECS (электронный датчик удара). Сенсоры боковых подушек безопасности называются также датчиками бокового удара.

В некоторых системах после замены необходимо «обучать» или калибровать в модуле SRS. В некоторых системах сенсоры удара могут повторно использоваться после аварий, приведших к срабатыванию подушки безопасности. При этом обязательно следует соблюдать указания актуальной литературы для станций технического обслуживания.

Датчик угла поворота

Место установки: в ТНВД распределительного типа VP30/VP44. Физический принцип действия: эффект Холла. Зонд улавливает поворот задающего ротора, на котором выполнены мелкие зубья. В определенных местах зубья отсутствуют (специально рассчитанные промежутки).

Датчик поворота

Тип сигнала: сигнал прямоугольной формы. Частота зависит от скорости вращения ротора.

Сам датчик угла поворота проверить и заменить нельзя, т. к. он неразъемно соединен с модулем управления ТНВД (PCU). При неисправности необходимо полностью заменить ТНВД распределительного типа.

Датчик положения дроссельной заслонки (TP) (бензиновый двигатель)

Место установки во впускном тракте на корпусе дроссельной заслонки. Физический принцип действия: потенциометр со скользящим контактом.

Датчик положения заслонки

При открытии дроссельной заслонки в датчике TP (положение дроссельной заслонки) контакт перемещается по дорожке резистора. Сопротивление растет пропорционально перемещению дроссельной заслонки в направлении WOT (полностью открытая дроссельная заслонка).

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,6 – 4,8 В. При полность закрытой дроссельной заслонке напряжение примерно 0,8 вольт, открытой – примерно 4,7 В.

С помощью осциллографа можно проверить непрерывность и равномерность характеристики сигнала TP. Для этого нужно плавно переместить дроссельную заслонку из положения холостого хода в положение WOT. При этом напряжение на осциллографе также должно изменяться плавно и непрерывно.

Сигнал датчика TP

Если напряжение меняется скачкообразно, или имеются пики напряжения (вызванные трещинами или загрязнением), выходящие из допустимого диапазона напряжения, это означает, что TP неисправен.

Примечание: Микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться на прогретом двигателе.

Датчик давления усилителя тормозов

Место установки на усилителе тормозов. Физический принцип действия: упругая мембрана с тензорезисторами.

Датчик давления усилителя

Измеряет разрежение в усилителе тормозов. В зависимости от давления в усилителе тормозов изменяется сопротивление, а следовательно, падение напряжения на измерителе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,4 – 4,5 В. Для проверки при включенном зажигании несколько раз нажмите на педаль тормоза (для уменьшения разрежения в усилителе тормозов) – напряжение 3,5 – 4,5 В.

При работающем двигателе после нескольких нажатий на педаль акселератора (максимальное разрежение в усилителе тормозов) – напряжение 0,4 – 1,0 В.

Датчики разности давлений: расхода отработавших газов в системе рециркуляции / разности давлений в сажевом фильтре

Место установки в зависимости от назначения: датчик расхода отработавших газов в системе рециркуляции устанавливается между клапаном EGR (рециркуляция отработавших газов) и выпускным коллектором.

Назначение/принцип действия: регистрирует разность давлений в трубопроводе к клапану EGR или разность давлений перед за сажевым фильтром.

Датчик расхода газов

В трубопроводе предусмотрен дроссель (трубка Вентури). В зависимости от расхода отработавших газов, т. е. степени открытия клапана EGR, между концами дросселя возникает соответствующий перепад давлений.

Этот перепад (потеря давления) регистрируется датчиком расхода отработавших газов в системе рециркуляции и передается на PCM в виде электрического сигнала.

Датчик разности давлений в сажевом фильтре (фото ниже) с помощью трубопроводов подключается к штуцерам до и после сажевого фильтра. Физический принцип действия: упругая мембрана с тензорезисторами.

Датчик разности давлений

Сажевый фильтр оказывает определенное сопротивление потоку отработавших газов. При этом возникает разница давлений отработавших газов перед сажевым фильтром и после него.

В зависимости от разницы давлений изменяются сопротивления тензорезисторов. Это приводит к изменению напряжения. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В.

Работу зонда разности давлений в сажевом фильтре или расхода отработавших газов в системе рециркуляции можно проверить с помощью ручного насоса и регистратора данных следующим образом:

  1. Выбрать в регистраторе данных разность давлений в сажевом фильтре.
  2. С датчика разности давлений в сажевом фильтре снять шланг, ведущий к переднему штуцеру сажевого фильтра.
  3. Подключить к штуцеру датчика ручной насос и создать им определенное давление (например 300 мбар).
  4. Считать разность давлений в регистраторе данных. Считанное значение должно соответствовать установленному на ручном насосе значению.

Датчик скорости автомобиля (ДСА) (VSS)

Место установки ДСА на корпусе коробки передач (выходной вал). Физический принцип действия: эффект Холла или индуктивный (на автомобилях старых моделей).

Датчик скорости авто

Назначение/принцип действия: сенсор VSS регистрирует частоту вращения выходного вала коробки передач. В зависимости от принципа работы:

  • генерирует сигнал переменного напряжения (индуктивный зонд). Пропорционально частоте вращения изменяется напряжение и частота сигнала;
  • генерирует сигнал прямоугольной формы (эффект Холла). Изменяется частота сигнала. Напряжение питания и сигнала 12 В.

Вид сигнала зависит от установленного датчика, а также от коробки переключения передач.

График сигнала датчика VSS

В автомобилях новых моделей, оснащенных системой ABS, скорость автомобиля определяется с помощью датчиков скорости колес. VSS не устанавливается.

При этом индицируемый регистратором данных сигнал VSS рассчитывается PCM или генерируется зондом OSS.

Сигнал индуктивного датчика скорости

Датчик положения педали акселератора (APP) с потенциометром

APP встроен в педаль акселератора. Физический принцип действия: потенциометр со скользящим контактом. APP определяет текущее положение педали акселератора.

Датчик APP с потенциометрами

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0 – 4,5 В. Для контроля достоверности данных APP состоит из двух или трех датчиков. При нажатии на педаль акселератора вал поворачивается и скользящие контакты перемещаются по дорожкам потенциометров.

Дорожки потенциометра выполнены таким образом, что по мере перемещения по ним скользящих контактов сопротивления потенциометров плавно увеличиваются (или уменьшаются). Изменение сопротивления приводит к пропорциональному изменению напряжения, являющегося сигналом о положении педали акселератора.

Датчик APP с потенциометрами

Для надежного распознавания неполадок дополнительные датчики APP 2 и, при необходимости, APP 3 могут передавать дублирующий и/или отличающийся от APP 1 сигнал напряжения в PCM.

Примечание: Микротрещины и прочие неисправности могут привести к сбоям в работе датчика при низких температурах. Эти сбои могут не проявляться на прогретом двигателе.

Датчик APP с двумя потенциометрами

Особенности APP с потенциометром со скользящими контактами: при измерении сопротивлений датчика следует учесть, что потенциометры со скользящим контактом восприимчивы к температуре, отклонения значений сопротивлений могут достигать 10%.

Индуктивный датчик положения педали акселератора (APP)

APP встроен в педаль акселератора. Индуктивный датчик APP определяет текущее положение педали акселератора. Для контроля достоверности данных APP состоит из двух или трех датчиков. Напряжение питания примерно 12 В.

Датчик APP с индуктивными датчиками

Работа индуктивного датчика во многом аналогична работе трансформатора. Сначала необходимо преобразовать входное постоянное напряжение в переменное напряжение.

При нажатии педали акселератора в индуктивном APP поворачивается ротор. Он является магнитопроводом для индуцирования переменного напряжения во вторичной обмотке.

В результате переменное напряжение в первичной обмотке вызывает возникновение переменного напряжения во вторичной обмотке. При этом индукция во вторичной обмотке зависит от положения ротора:

  • педаль акселератора не нажата – небольшая индукция, т. е. малая амплитуда переменного напряжения;
  • педаль акселератора полностью нажата – сильная индукция, т. е. большая амплитуда переменного напряжения.

Чтобы модуль PCM мог использовать выдаваемый вторичной обмоткой сигнал переменного напряжения, его сначала необходимо преобразовать в цифровую форму – это выполняет блок обработки APP.

На автомобили в настоящее время устанавливают APP с двумя индуктивными датчиками. В соответствии с требованиями стратегии управления двигателем сигналы индуктивных сенсоров обрабатываются электронным блоком в APP следующим образом:

  • APP 1 = сигнал PWM;
  • APP 2 = аналоговый сигнал постоянного напряжения 0 – 5 В.

Индуктивный датчик APP1

Не задействован – PWM с малой длительностью импульсов (малой скважностью).

Индуктивный датчик APP

Полностью задействован – PWM с большой длительностью импульсов (большой скважностью).

Датчик выбранной передачи (TR)

TR устанавливается в коробке передач (в блоке клапанов) или на коробке передач (вал переключения передач). Физический принцип действия: переключатель со скользящим контактом, эффект Холла или потенциометр с кодировкой напряжения.

Датчик выбранной передачи

TR регистрирует текущее положение рычага селектора. В зависимости от принципа работы в соответствующих положениях выполняется:

  1. C помощью выключателя замыкается соответствующая электрическая цепь.
  2. C помощью датчика Холла генерируется цифровой сигнал.
  3. C помощью изменения сопротивления задается изменение (кодирование) напряжения.

Проверка любого зонда TR возможна только в регистраторе данных. Индикация в регистраторе данных зависит от установленной на автомобиль АКПП (например, бесступенчатая коробка передач (вариатор), АКПП с возможностью переключать передачи вручную). Соответственно в регистраторе данных можно выполнить проверку:

  • датчика TR;
  • выключателя ручного переключения на рычаге селектора;
  • клавиш ручного переключения на рулевом колесе;
  • выключателя повышающей передачи (зимний режим) на рычаге селектора.

Сигнал датчика TR

Положение рычага селектора или включенная вручную передача (в режима ручного переключения) может отображаться, в зависимости от оснащения автомобиля, также в комбинации приборов.

Примечание для TR со скользящим контактом: микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться при прогретом двигателе.

Даже при корректной индикации в регистраторе данных настройка троса между рычагом селектора и коробкой передач всегда должна выполняться с помощью специального инструмента, в соответствии с инструкциями, изложенных в руководствах для сервисных предприятий.

Датчик температуры трансмиссионной жидкости (TFT)

Место установки в картере автоматической коробки передач или в блоке управления коробкой передач. Физический принцип действия: NTC-резистор.

Датчик температуры трансмиссионной жидкости

TFT измеряет текущую температуру трансмиссионной жидкости АКПП. В зависимости от температуры трансмиссионной жидкости изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. Интегрированные в блок управления коробкой передач датчики TFT нельзя заменить отдельно.

Датчики частоты вращения выходного вала (OSS), входного вала (ISS), вала турбинного колеса (TSS)

Место установки: в некоторых коробках передач (автоматическая коробка передач, автоматизированная механическая коробка передач или бесступенчатая автоматическая коробка передач (вариатор)) место установки датчиков может отличаться. Датчики устанавливаются снаружи на картере коробки передач или внутри коробки у соответствующего вала.

Датчики частоты вращения валов

Физический принцип действия: индуктивный или эффект Холла. Назначение/принцип действия: улавливают вращения валов благодаря расположению вблизи соответствующего зубчатого колеса или зубчатого венца (задающего ротора) вала.

В зависимости от принципа работы генерирует сигнал переменного напряжения или сигнал прямоугольной форм. Пропорционально частоте вращения изменяется напряжение и частота сигнала (индуктивный датчик) или изменяется частота сигнала (датчик Холла).

ПРИМЕЧАНИЕ: TCM (модуль управления коробкой передач) автоматической коробки передач нельзя диагностировать с помощью мультиметра. В противном случае TCM будет выведен из строя.

На графике OSS, TSS (частота вращения вала турбины) и частота вращения двигателя в регистраторе данных.

Сигнал вращения валов

На графике ниже отображение сигнала индуктивного TSS в осциллографе на холостом ходу.

Сигнал индуктивного TSS

На графике ниже отображение сигнала индуктивного TSS в осциллографе при частоте вращения примерно 2500 об/мин.

Сигнал индуктивного датчика в осциллографе

Вид сигнала зависит от установленного датчика, а также от его зубчатого колеса/зубчатого венца (задающего ротора).

В некоторых коробках передач OSS также называется VSS. В некоторых коробках передач сигналы частоты вращения валов КП используются также для самодиагностики.

Датчик рысканья

Место установки по центру на днище автомобиля или на передней стенке кузова рядом с рулевой колонкой (автомобили с левосторонним рулевым управлением).

Датчик рысканья

Физический принцип действия: пьезо или емкостной. Датчик рыскания измеряет скорость поворота автомобиля вокруг вертикальной оси.

Датчик поперечного ускорения определяет ускорение автомобиля в поперечном направлении. Датчик наклона измеряет усилие, возникающее в наклонном положении и действующее аналогично силе ускорения. Интегрированный в сенсор блок обработки анализирует поступающие сигналы и генерирует соответствующий цифровой сигнал.

Напряжение питания примерно 12 В. Тип сигнала: цифровой протокол CAN, 5 В. Частота 500 Kбит/с. С помощью регистратора данных можно провести только общую проверку работы. Оценка сигналов с помощью сканера невозможна.

В некоторых системах датчики рыскания после замены необходимо «обучить» или откалибровать с помощью сканера. При этом следует соблюдать инструкции актуальной литературы для станций технического обслуживания.

Датчик разрушения стекла

Место установки в заднем боковом стекле или в нагревательном элементе заднего стекла. Физический принцип действия: сопротивление (резистор).

Датчик разрушения стекла

Датчик разрушения стекла устанавливается в универсалах или минивэнах/микроавтобусах с противоугонной сигнализацией. Он представляет собой так называемую петлю сопротивления (электрический проводник).

В боковых стеклах петля сопротивления встраивается отдельно. В заднем стекле ее роль выполняет нагревательный элемент заднего стекла, включенный в цепь противоугонной сигнализации. При разрыве петли сопротивление в цепи возрастает.

Напряжение питания примерно 12 В. Тип сигнала: ВКЛ/ВЫКЛ. Значение меньше 0,5 Ом, петля не разорвана. Сопротивление > 10 кОм, петля разорвана. При неисправности код DTC не регистрируется.

Датчик охраны салона

Место установки в зависимости от автомобиля: на средних стойках; в плафоне освещения салона; в обивке потолка; по центру автомобиля на панели пола (микроволновый датчик).

Физический принцип действия: ультразвуковой или микроволновый. Распознает движение в салоне автомобиля и выдает сигнал тревоги. Напряжение питания примерно 12 В. Тип сигнала: сигнал тревоги, милливольт. В некоторых системах возможно считывание кода неисправности DTC.

Датчик охраны салона

Датчики охраны салона можно проверить, включив противоугонную систему. Проверяющий должен находиться в автомобиле. После фазы активации, длящейся примерно 30 секунд, введите руку в область излучения соответствующего датчика. В результате должна сработать сигнализация.

Проверку можно также выполнить при открытом окне. Окно следует открыть лишь немного так, чтобы образовалась небольшая щель. Через нее в область излучения датчика можно ввести какой-либо предмет.

Микроволновый датчик оснащен светодиодом. Для проверки включить режим максимальной защиты противоугонной системы. В конце процедуры должен один раз загореться светодиод.

В зависимости от страны существует возможность отключения сенсоров охраны салона. Необходимые указания содержатся в соответствующем руководстве по эксплуатации. Информация о срабатывании сигнализации и причина срабатывания сохраняются в соответствующем модуле, эту информацию можно считать с помощью диагностического прибора.

Датчик давления хладагента

Место установки со стороны высокого давления A/C (кондиционирование воздуха). Физический принцип действия: упругая мембрана с тензорезисторами. Регистрирует давление в контуре высокого давления системы кондиционирования.

Датчик давления хладагента

В зависимости от давления хладагента изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение 0,5 – 4,5 В. Сопротивление зависит от давления.

При выходе из строя в PCM заносится код ошибки. Достоверность показаний, при неисправности измерительного элемента, модулем PCM не контролируется.

Параметры датчика давления

Сенсоры давления хладагента устанавливаются на автомобилях новых моделей вместо двойных датчиков давления (выключателей). За счет линейной характеристики возможно более точное управление вентилятором.

Датчик детонации (KS)

Место установки на блоке цилиндров под головкой блока цилиндров. Физический принцип действия: пьезодатчик.

Датчик детонации

KS (датчик детонации) регистрирует возникающие в цилиндре колебания и генерирует соответствующий этим механическим колебаниям электрический сигнал.

Чем сильнее колебания, тем выше частота и величина переменного напряжения сигнала. Тип сигнала: переменное напряжение, милливольт. Сопротивление примерно 4,8 МОм. Частота 4 кГц – 18 кГц. При неисправности заносится код ошибки.

Проверить можно с помощью коробки-разветвителя или кабель-адаптера для подключения мультиметра к зонду KS. Настроить мультиметр на минимальный диапазон измерения переменного напряжения (мВ). Напряжение должно регистрироваться мультиметром при легком ударе по блоку цилиндров.

Сигнал датчика детонации

В зависимости от модификации на 4-х цилиндровых двигателях могут устанавливать один или два сенсора детонации. Если установлен один KS, то он находится в середине блока цилиндров между вторым и третьим цилиндром.

Если установлено 2 датчика детонации, то они находятся между первым и вторым, а также между третьим и четвертым цилиндром. Шестицилиндровые двигатели с V-образным расположением цилиндров всегда имеют два сенсора детонации, по одному в центре каждого ряда цилиндров.

Датчик усилия

Место установки в приводе стояночного тормоза (электронный стояночный тормоз). Физический принцип действия: эффект Холла. Назначение: измеряет усилие, действующее на трос стояночного тормоза (электронный стояночный тормоз).

Датчик усилия

Датчик усилия нельзя проверить, поскольку он полностью интегрирован в привод стояночного тормоза. При неисправности необходимо полностью заменить привод стояночного тормоза. Возможно считывание кода DTC диагностическим прибором.

Датчик давления топлива

Место установки в топливной рейке (рампе) системы впрыска. Устройство датчика давления: упругая мембрана с тензорезисторами. Назначение/принцип действия: измеряет давление топлива в топливной рейке (рампе).

Датчик давления топлива

В зависимости от давления топлива изменяется сопротивление, а следовательно, падение напряжения на зонде. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,8 В. Сопротивление в зависимости от давления.

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры давления отображаются в регистраторе данных.

Номинальные значения напряжения для системы Common-Rail компании Denso

Давление топлива, бар Напряжение, В
0 примерно 1,0
200 примерно 1,32
1000 примерно 2,6
1600 примерно 3,56
2000 примерно 4,2

В условиях сервиса датчик давления топлива нельзя заменить отдельно. При неисправности сенсора давления топлива необходимо поменять топливную рейку (рампу) в сборе.

Датчик уровня топлива

Место установки в топливном баке, интегрирован в FPDM (модуль управления топливным насосом). Физический принцип действия: потенциометр со скользящим контактом. Назначение: определяет уровень топлива в топливном баке.

Датчик уровня топлива

При изменении уровня топлива меняется положение скользящего контакта на дорожке потенциометра, а следовательно, падение напряжения на измерителе. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение.

В датчиках уровня топлива старого образца может иметься 2 дорожки потенциометров, сопротивление которых изменяется обратно пропорционально. В соответствии с этим при увеличении сопротивления одного из потенциометров сопротивление другого потенциометра уменьшается и наоборот.

Положение датчика
уровня топлива
Сопротивление, Ом
Топливный бак пуст > 150
Топливный бак заполнен на 50% примерно 50 – 80
Топливный бак полон менее 20

Код ошибки не фиксируется. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных. Отображаемое на панели приборов значение можно проверить путем самотестирования панели приборов. Указания по проведению самодиагностики содержатся в соответствующей литературе для станций технического обслуживания.

Для точной проверки необходимо снять датчик уровня топлива и проверить сопротивление потенциометра со скользящим контактом. При перемещении скользящего контакта по дорожке потенциометра сопротивление должно изменяться непрерывно и плавно.

Датчик температуры топлива

Место установки в обратной топливной магистрали или на ТНВД. Физический принцип действия NTC-резистор. Измеряет температуру топлива в обратной магистрали.

Датчик температуры топлива

В зависимости от температуры топлива изменяется сопротивление, а следовательно, падение напряжения на сенсоре. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,9 В. Сопротивление в зависимости от температуры.

Номинальные значения сопротивления для топливной системы Common-Rail компании Denso

Температура, °C Сопротивление, кОм
–30 примерно 25,4
–20 примерно 15,04
–10 примерно 9,16
0 примерно 5,74
10 примерно 3,70
20 примерно 2,45
30 примерно 1,66
40 примерно 1,15
50 примерно 0,811
60 примерно 0,584
70 примерно 0,428
80 примерно 0,318
90 примерно 0,240
100 примерно 0,184
110 примерно 0,142
120 примерно 0,111

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Значения температуры отображаются в регистраторе данных.

Датчик положения педали сцепления (автомобили с системой помощи при трогании на склоне)

Место установки на главном цилиндре сцепления. Физический принцип действия: индуктивный датчик. Служит для определения момента замыкания сцепления (определение момента трогания с места для систем с электронным стояночным тормозом).

Датчик положения педали сцепления

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных. Возможна проверка осциллографом.

Датчик можно заменить отдельно. Однако установленном на автомобиль главном цилиндре сцепления доступ к датчику ограничен. Поэтому снятия и монтаж датчика проводится специальным инструментом.

Датчик положения коленчатого вала (CKP)

Место установки рядом с маховиком или шкивом (гасителем крутильных колебаний). Физический принцип действия: индуктивный или эффект Холла.

Датчик положения коленчатого вала

CKP улавливает положение зубчатого венца (индуктивный датчик) или специального диска с точно определенным количеством пар магнитных полюсов (север/юг) (датчик Холла).

Между некоторыми зубьями или парами магнитных полюсов предусмотрены промежутки. Сигнал CKP зависит от скорости вращения.

Индуктивный сигнал CKP

При индуктивном CKP частота сигнала, а также амплитуда увеличиваются пропорционально росту частоты вращения коленчатого вала.

В датчиках Холла с увеличением частоты вращения коленчатого вала двигателя растет только частота сигнала.

Опорное напряжение примерно 5 В. Тип сигнала: синусоидальный сигнал (индуктивный сенсор); сигнал прямоугольной формы (эффект Холла).

Цифровой сигнал датчика CKP

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM (индуктивный). Возможна проверка осциллографом. Параметры сигнала не отображаются в регистраторе данных. При отсутствии сигнала CKP при запуске двигателя, величина оборотов в регистраторе данных равна 0.

Для систем с индуктивным датчиком важную роль играет скорость вращения стартера. Чтобы получить надежный сигнал для дальнейшей обработки в PCM, при запуске должна достигаться определенная частота вращения коленчатого вала (при этом напряжение сигнала достигает достаточной величины). Кроме того, величина минимального напряжения сигнала CKP, принимаемого для запуска двигателя модулем PCM, задается в программе модуля.

Корректная настройка воздушного зазора между сенсором и задающим ротором, а также положение сенсора, имеет большое значение. Небольшие отклонения могут привести к тому, что двигатель не запустится.

Загрязнение (например, масло или коррозия) между задающим ротором и сенсором могут привести к тому, что двигатель не запустится или будет работать неравномерно. Если мотор запускается и работает без перебоев, значит сигнал в норме.

Датчик температуры охлаждающей жидкости двигателя (ECT) и температуры головки блока (CHT)

Место установки датчика ECT в малом контуре охлаждающей жидкости двигателя автомобиля. Датчик CHT установлен на головке блока цилиндров.

Датчик температуры охлаждающей жидкости

Физический принцип действия: NTC-резистор. ECT/CHT измеряет температуру охлаждающей жидкости или соответственно температуру головки блока цилиндров.

В зависимости от температуры охлаждающей жидкости или температуры головки блока изменяется сопротивление, а следовательно, падение напряжения на зонде.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Номинальные параметры датчика температуры охлаждающей жидкости ECT-/CHT в системах Visteon

Температура, °C Сопротивление, кОм Напряжение, В
–40 860 – 900 4,51 – 4,54
–30 501 – 645 4,46 – 4,49
–20 253 – 289 4,31 – 4,35
–10 170 – 196 4,17 – 4,23
0 89,0 – 102 3,82 – 3,92
10 62,0 – 70,0 3,5 – 3,7
20 35,0 – 40,0 3,0 – 3,2
30 25,0 – 28,0 2,6 – 2,8
40 15,0 – 17,0 2,0 – 2,2
50 11,0 – 13,0 1,7 – 1,9
60 7,1 – 8,0 1,2 – 1,4
70 5,0 – 6,2 0,9 – 1,2
80 3,0 – 4,5 0,6 – 0,9
90 2,4 – 3,5 0,5 – 0,7
100 1,9 – 2,5 0,4 – 0,5
110 1,5 – 1,7 0,3 – 0,4
120 1,0 – 1,3 0,2 – 0,3

ПРИМЕЧАНИЕ: Для датчиков CHT при измерениях с помощью регистратора данных после «скачка напряжения» (подключения второго сопротивления) выдаются другие значения.

Сигнал CHT недостаточно точен при высоких температурах, т. е. он не обеспечивает точной работы во всем диапазоне измерений.

Для компенсации этого эффекта характеристическая кривая температуры сдвигается путем подключения второго сопротивления непосредственно в модуле PCM. Температура подключения и отключения второго сопротивления определяется стратегией управления двигателем (программой).

Температуры включения/отключения второго сопротивления могут быть смещены друг относительно друга (гистерезис). Это делается для того, чтобы предотвратить постоянное включение/отключение второго сопротивления при длительной работе двигателя с соответствующей моменту переключения температурой ОЖ. Пример:

  1. Системы Visteon (дизельный двигатель): температура включения: 78 °C, температура отключения: 62 °C;
  2. Системы Siemens (дизельный двигатель): температура включения: 85 °C, температура отключения: 80 °C.

Датчик угла поворота рулевого колеса

Место установки на рулевой колонке или непосредственно за рулевым колесом. Физический принцип действия: оптоэлектронный или магниторезистивный.

Назначение: измеряет угол поворота рулевого колеса. Встроенный блок обработки результатов генерирует цифровой сигнал, соответствующий повороту рулевого колеса.

Датчик угла поворота рулевого колеса

При регистрации только относительного вращения сенсор измеряет только изменение угла поворота рулевого колеса. Прямое положение рулевого колеса в датчике не задано.

При регистрации абсолютного вращения сенсор генерирует сигнал, соответствующий каждому положению рулевого колеса. В датчике задано прямое положение рулевого колеса.

Напряжение питания примерно 12 В. Тип сигнала: цифровой, протокол CAN, 5 В. Частота 500 Kбит/с. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии).

Показания параметров измерения в регистраторе данных могут отсутствовать из-за программного обеспечения модуля контроля. Датчики угла поворота рулевого колеса непрерывно проверяются модулем ABS/системы поддержания курсовой устойчивости.

Сигнал датчика угла поворота рулевого колеса

При отображении сигнала в регистраторе данных необходимо помнить, что, при определенных условиях, область измерения может быть изображена не для всего диапазона поворота рулевого колеса (от упора до упора).

Для проверки достаточно повернуть рулевое колесо в каждом направлении, т. к. возможная ошибка будет повторяться.

Оптоэлектронный датчик угла поворота

С помощью светового затвора оптоэлектронный сенсор угла поворота рулевого колеса бесконтактно улавливает поворот жестко связанного с валом рулевой колонки диска с отверстиями.

Магниторезистивные сенсоры угла поворота рулевого колеса включают в себя два постоянных магнита, каждый из которых поворачивается на шестерне, находящейся в зацеплении с шестерней рулевой колонки.

Магниторезистивный датчик угла поворота

Передаточное отношение у этих двух зубчатых передач разное (разное число зубьев у шестерен магнитов), поэтому в каждом положении рулевого колеса магниты по разному ориентированы друг относительно друга.

В некоторых системах сенсор угла поворота рулевого колеса после замены необходимо «обучить» или откалибровать с помощью диагностического прибора. При этом следует соблюдать инструкции актуальной литературы для станций технического обслуживания. При настройке можно одновременно выполнить проверку работы сенсора.

Проверка датчика угла поворота

Датчик освещенности

Датчик освещенности для автоматического контроля света объединен вместе с датчиком дождя автоматического стеклоочистителя в один блок, расположенный за ветровым стеклом в зоне работы стеклоочистителя, неподалеку от внутреннего зеркала в автомобиле.

Физический принцип действия: фотогальваника. Состоит из трех элементов: датчика освещенности вблизи, освещенности на удалении и рассеивателя.

Датчик освещенности

Сенсор освещенности вблизи определяет освещенность в непосредственной близости от ветрового стекла. От сенсора освещенности на удалении поступает информация об уровне освещенности перед автомобилем.

Если оба сенсора освещенности (вблизи и на удалении) одновременно регистрируют резкое снижение освещенности, то с помощью алгоритма расчета в модуле автоматического управления светом или GEM (модуль управления электрооборудованием) генерируется цифровой частотно модулированный сигнал на включение внешних световых приборов.

Напряжение питания примерно 12 В. Тип сигнала: цифровой код. При неисправности заносится код ошибки DTC. При не соответствующем сигнале при включении функции автоматического управления светом может постоянно гореть ближний свет. Сенсор способен отличить дневной свет от искусственного освещения. Датчик освещенности не поддается диагностике.

Датчик массового расхода (MAF)

Место установки во впускном тракте, за воздушным фильтром. Физический принцип действия: термоанемометрический расходомер воздуха с проволочным элементом или термоанемометрический горячепленочный расходомер воздуха. MAF измеряет массу поступающего в автомобильный двигатель воздуха.

Датчик массового расхода

Принцип действия расходомера воздуха с проволочным элементом MAF: поток воздуха проходит через трубку Вентури, находящуюся в корпусе MAF.

Возникающее в трубке разрежение вызывает подсос определенного количества воздуха через обходной канал.

В обходном канале находится проволочный нагревательный элемент и резистор температурной компенсации. Датчик температуры воздуха измеряет температуру проходящего воздуха, который охлаждает проволочный нагревательный элемент.

Расходомера воздуха с проволочным элементом

Блок управления подает на проволоку определенный ток для поддержания постоянной разницы температур проволоки и потока воздуха. При этом способе измерения учитывается плотность воздуха, т. к. от неё зависит величина теплопередачи от проволоки к охлаждающему её воздуху.

Ток нагрева проволочного элемента является, таким образом, мерой массового расхода воздуха. На основе этого тока в блоке обработки датчика генерируется пропорциональный массовому расходу воздуха сигнал напряжения, который передается на PCM. Здесь существует следующая закономерность:

  • малый массовый расход воздуха – низкое напряжение (примерно 0,5 В);
  • большой массовый расход воздуха – высокое напряжение (примерно 5 В).

Принцип действия пленочного расходомера воздуха MAF: в зависимости от стратегии управления двигателем пленочный расходомер воздуха MAF может быть аналоговым или цифровым.

Пленочный расходомер воздуха MAF способен распознавать направление потока воздуха. Для этого на поверхности кристалла выполнены два элемента измерения температуры, каждый из которых нагревается от электрического нагревательного элемента и охлаждается потоком воздуха.

Блок управления подает на нагревательный элемент такой ток, чтобы поддерживать постоянную разницу между температурами нагревательного элемента и потока воздуха.

Плёночный расходомер воздуха

На основании сигналов обоих элементов измерения температуры можно определить как массовый расход воздуха, так и направление потока. Поэтому даже при сильных пульсациях потока воздуха можно точно рассчитать массовый расход воздуха.

Направление потока определяется при сравнении значений температур измерительных элементов (первый по отношению к набегающему потоку элемент охлаждается сильнее, т. е. его температура меньше).

Напряжение питания (некоторые варианты) примерно 12 В или опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,75 В или частота 700– 10000 Гц.

Частоты расходомера MAF

Вывод сигнала MAF в регистраторе данных зависит от варианта автомобиля. Данные могут выводиться в вольтах (В) и в граммах за секунду (г/с). Выданное расходомером MAF значение зависит от модификации системы впуска, а также от рабочего объема двигателя машины.

Сигнал аналогового датчика

Значение сигнала аналогового MAF при максимальном ускорении и полной нагрузке на 3 передаче должно превышать 4 В.

Цифровой MAF: частота изменяется с ростом частоты вращения и расхода воздуха.. Кроме того, массовый расход воздуха и сигнал сенсора зависит от конструкции впускного тракта.

Значение сигнала цифрового MAF при максимальном ускорении на 3-ей передаче примерно 120 – 150 г/сек. В некоторых автомобилях значения расхода воздуха отображаются в кг/час.

Сигнал цифрового датчика MAF

В новые расходомеры MAF встроен датчик IAT. Он предназначен, в основном, для коррекции сигнала MAF. В результате обеспечивается более точное измерение массового расхода воздуха. Физический принцип работы, а также способы проверки те же, что и у отдельного датчика IAT.

В некоторых автомобилях после замены расходомера MAF требуется выполнить сброс параметров в модуле управления с помощью диагностического прибора. Необходимые указания содержатся в актуальной литературе для станций технического обслуживания.

Датчик температуры воздуха в салоне и подаваемого воздуха

Место установки на панели приборов или на дефлекторах вентиляции салона. Физический принцип действия: NTC-резистор. Измеряет температуру воздуха на дефлекторах и в салоне автомобиля.

В зависимости от температуры воздуха изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Датчик температуры воздуха в салоне

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки (DTC).

Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

В зависимости от модели и комплектации, в автомобиле может быть установлено несколько датчиков в дефлекторах пространства для ног и ветрового стекла, а также в центральных дефлекторах (на панели приборов).

Зависимость сопротивления сенсора

На графике показана зависимость сопротивления сенсора от температуры подаваемого воздуха, действительная для всех современных автомобилей.

В регистраторе данных их сигналы можно отобразить по отдельности. При этом следует помнить, что предустановленная область измерения настроена на оптимальные для диагностики значения (0 – 50 °C).

На диаграмме показаны значения сенсоров температуры системы кондиционирования воздуха при изменении температуры (в регистраторе данных).

Сигнал датчиков температуры

Отображаемые значения должны соответствующим образом изменяться при изменении температуры или положения воздушных заслонок. Полученные при этом данные можно параллельно сравнить с показаниями обычного термометра. Для этого нужно поместить термометр в соответствующий поток воздуха.

В конструкцию датчиков температуры в салоне часто входит дополнительный вентилятор, который всасывает воздух из салона, чтобы получить оптимальный результат измерения.

Его частоту вращения также можно отобразить в регистраторе данных (значения в герцах (Гц)). При выходе этого вентилятора из строя индицируемое в регистраторе данных значение температуры этого датчика может отличаться от действительной температуры в салоне. При неисправности фиксируется код ошибки.

Датчик наклона

Место установки по одному датчику на передней и задней оси (автомобили с автоматическим корректором фар). Физический принцип действия: эффект Холла или индуктивный. Датчик измеряет высоту автомобиля относительно некоторого заданного уровня.

Датчик наклона

В соответствии с наклоном автомобиля и возникающим в связи с этим изменением положения рычага датчика встроенный блок обработки результатов генерирует напряжение.

Напряжение питания 4,8 – 5,2 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки. Проверять направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных.

Для некоторых систем данные могут быть представлены по-разному: вольты, градусы или проценты. Ниже показан сигнал при многократном изменении высоты автомобиля (быстрое покачивание) в регистраторе данных.

Сигнал изменения высоты

Для точной проверки необходимо отсоединить от автомобиля рычаг датчика. Это позволит отобразить сигнал в регистраторе данных при прохождении всего диапазона перемещения рычага.

При этом следует помнить, что на автомобиле с вывешенными колесами значения сигнала могут находиться вне области измерения, и проверка возможна только в ограниченных пределах.

Изменение сигнала

Показания переднего и заднего сенсора служат для определения наклона автомобиля и, соответственно, для коррекции наклона фар. Изменение сигнала не обязательно сразу же приводит к коррекции наклона фар, поскольку системы работают с разными временами реакции или алгоритмами.

При изменении дорожного просвета автомобиля (например, при установки комплектов для его уменьшения) может потребоваться соответствующая адаптация точек крепления датчиков или рычагов.

При работах с сенсорами наклона необходимо обратить особое внимание на их правильное положение, т. к. при неправильной установке не гарантируется надлежащая работа.

В некоторых системах сенсор наклона после замены необходимо откалибровать или «обучить». При этом необходимо соблюдать рекомендации последнего издания руководства по обслуживанию автомобиля. Датчики наклона называются еще датчиками корректора фар или уровня/положения автомобиля.

Датчик положения распределительного вала (CMP)

Место установки в головке блока цилиндров, в зависимости от положения задающего ротора. Существуют следующие типы задающих роторов: задающий ротор с выступом на распределительном вале и задающий ротор на зубчатом шкиве распределительного вала.

Физический принцип действия: эффект Холла или индуктивный. Служит для распознавания положения ВМТ первого цилиндра для определения последовательности впрыска.

Датчик положения распределительного вала

CMP улавливает перемещение одного или нескольких выступов на распределительном вале или изменение положения задающего ротора на зубчатом шкиве распределительного вала. Количество сигналов и расстояния между сигналами зависит от типа системы впрыска и от соответствующей стратегии управления двигателем.

Опорное напряжение: индуктивный зонд примерно 5 В / 12 В; датчик Холла 12 В. Тип сигнала: синусоидальный (индуктивный); прямоугольной формы (эффект Холла). Сопротивление индуктивного сенсора 200 – 900 кОм. Частота сигнала зависит от скорости вращения.

Диагностика DTC не для всех систем – зависит от программного обеспечения. Проверяется направленной диагностикой (при наличии), цифровым мультиметром DMM (индуктивный зонд) и осциллографом. На рисунке ниже индуктивный сигнал системы последовательного впрыска во впускной коллектор на холостом ходу на осциллографе.

Индуктивный сигнал последовательного впрыска

Частота и амплитуда сигнала индуктивного CMP растет пропорционально увеличению частоты вращения распределительного вала. Таким образом, надежный сигнал можно получить только начиная с определенной частоты вращения распределительного вала (частоты вращения коленчатого вала двигателя). Этот тип CMP используется преимущественно в системах последовательного впрыска бензина во впускной коллектор.

Последовательный впрыск во впускной коллектор производится, когда частота вращения коленчатого вала двигателя достигает 400 — 600 об/мин. Для распознавания положения ВМТ первого цилиндра в этих системах используется контрольный выступ, проходящий возле датчика CMP за один рабочий цикл (два оборота коленчатого вала).

Напряжение прямоугольного сигнала (эффект Холла) генерируется не независимо от частоты вращения. При увеличении/уменьшении частоты вращения коленчатого вала двигателя изменяется только частота сигнала. На рисунке ниже сигнал Холла в системе прямого (непосредственного) впрыска бензина на холостом ходу на осциллографе.

Цифровой сигнал прямого впрыска

CMP на основе эффекта Холла в основном используются в двигателях с прямым (непосредственным) впрыском топлива. Использование этого типа сенсоров обусловлено возможностью однозначного и быстрого определения последовательности впрыска при запуске с относительно низкой частотой вращения коленчатого вала (в дизельных двигателях Common-Rail 250 – 300 об/мин).

В зависимости от стратегии управления двигателем для распознавания цилиндра может предусматриваться один или несколько выступов на распределительном вале/задающем роторе. Последовательность сигналов зависит от размеров выступа (выступов) (в зависимости от сигнала CMP), а также, от стратегии управления двигателем.

Датчик температуры и уровня масла

Место установки внутри блока цилиндров, рядом с масло измерительным щупом. Физический принцип действия зонда уровня масла: использование нагревательной проволоки, NTC-резистор. Служит для определения уровня и состояния масла. Опорное напряжение 5 В.

Датчик температуры масла

ПРИМЕЧАНИЕ: PCM кратковременно подает управляющее напряжение на нагревательную проволоку только при соблюдении определенных условий. Поэтому измерить силу тока и напряжение невозможно.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Номинальные параметры сенсора температуры и нагревательной проволоки указаны в таблицах.

Номинальные параметры для нагревательной проволоки

Температура, °C Сопротивление, Ом
–30 примерно 7,9
20 примерно 9,8
160 примерно 14,8

Номинальные параметры датчика температуры масла

Температура, °C Сопротивление, Ом
–40 80429 – 106834
–30 41895 – 54306
–20 22717 – 28796
0 7442 – 9078
20 2772 – 3269
40 1151 – 1320
60 526 – 588
80 261 – 285
100 139 – 149
120 78 – 83
140 45 – 50
160 27 – 32

Датчик положения исполнительного механизма (устройства) переключения передач

Место установки на корпусе исполнительного механизма переключения передач. Физический принцип действия: индуктивный (постоянный магнит с тремя катушками). Сенсор положения исполнительного механизма переключения передач регистрирует движение цилиндров включения и выбора передачи.

Датчик положения исполнительного механизма

На первичную обмотку подается напряжение. В результате перемещения магнита на вторичной обмотке индуцируется напряжение соответствующей величины. Опорное напряжение примерно 5 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

В регистраторе данных можно отобразить сигнал положения исполнительного механизма переключения передач. При этом индицируемая передача должна соответствовать передаче, включенной в КП.

Проверка датчика положения

Датчик положения исполнительного механизма переключения передач также называют датчиком положения цилиндров выбора и включения передач.

Датчик частоты вращения колеса

Место установки на корпусах ступичных подшипников передних и задних колес. Физический принцип действия: индуктивный (пассивный) или магниторезистивный (активный).

Датчик частоты вращения колеса

Назначение/принцип действия: измеряют частоту вращения отдельных колес. В зависимости от принципа работы генерируется сигнал переменного напряжения (индуктивный) или сигнал PWM с постоянной частотой (магниторезистивный).

При индуктивном принципе: частота, а также амплитуда сигнала увеличиваются пропорционально росту частоты вращения колеса..При магниторезистивном: пропорционально росту частоты вращения колеса увеличивается только скважность сигнала PWM.

Напряжение питания 11,3 – 11,5 В. Сопротивление 0,9 – 1,4 кОм (индуктивный датчик). При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии),цифровым мультиметром DMM (индуктивный сенсор) и осциллографом. Сигнал отображается в регистраторе данных.

Сигналы датчиков частоты вращения

В регистраторе данных рекомендуется отображать сигналы в виде гистограммы. В этом случае при прямолинейном движении у столбиков сигналов всех четырех сенсоров должна быть одинаковая длина.

Если один сигнал (или несколько сигналов) заметно отличается, то, возможно, в цепи этого сенсора возникла ошибка.

Выход из строя датчика

С конца 90-х годов широко применяются так называемые активные (магниторезистивные) сенсоры частоты вращения колеса. В отличие от индуктивных сенсоров они способны регистрировать частоту вращения, начиная с состояния покоя, что необходимо, например, для антипробуксовочных систем в момент начала движения.

Активный сенсор колеса состоит из двух магниторезистивных сопротивлений, которые соединены с двумя постоянными сопротивлениями по мостовой схеме (измерительный мост Витстоуна).

Активный датчик частоты

Благодаря такой схеме удается компенсировать влияние температуры и процессов старения на сигнал вращения колеса. Измерительный мост находится в непосредственной близости от задающего ротора, состоящего из постоянных магнитов с чередующейся полярностью.

Задающий ротор жестко соединен со ступицей или внутренним кольцом ступичного подшипника и вращается с частотой вращения колеса. В сенсор встроен блок обработки результатов измерений, который преобразует полученный в результате измерения синусоидальный сигнал в сигнал PWM с постоянной частотой.

Для работы необходимо подать напряжение питания, для этого на сенсоре есть два электрических контакта. Сигнал генерируется из тока, проходящего через сенсор. Ток большой силы (примерно 14 мА) интерпретируется модулем ABS/системы поддержания курсовой устойчивости как сигнал высокого уровня, ток малой силы (примерно 7 мА) как сигнал низкого уровня.

Чтобы модуль ABS/системы поддержания курсовой устойчивости мог правильно обработать сигнал пассивного зонда частоты вращения колеса (индуктивный), необходима достаточная амплитуда сигнала. Это означает, что пригодный к использованию сигнал может быть сгенерирован только начиная с некоторой минимальной скорости (примерно 5 — 7 км/ч, в зависимости от системы).

Как активный, так и пассивный сенсор частоты вращения колеса не изнашивается. В связи с использованием постоянных магнитов на сенсорах и задающих роторах могут оседать металлические частицы, например, частицы, образующиеся в процессе износа тормозных колодок. Эти частицы могут повлиять на работу. Поэтому при каждом вызванном сбое необходимо проверить чистоту сенсоров и их задающих роторов и, при необходимости, очистить их.

Датчик дождя в автомобиле

Место установки: интегрирован вместе с датчиком освещенности в один блок, расположенный за ветровым стеклом в области действия стеклоочистителей, недалеко от внутреннего зеркала.

Физический принцип действия: передача и прием инфракрасного излучения. Назначение/принцип действия: измеряет количество осадков, попавших на ветровое стекло. Если регистрируется определенное количество осадков на ветровом стекле, то с помощью алгоритма расчета в модуле автоматического управления наружным освещением или GEM генерируется цифровой частотно модулированный сигнал на включение стеклоочистителей. Напряжение питания примерно 12 В. Тип сигнала: цифровой код. При неисправности заносится код ошибки.

Датчик дождя

Диоды-излучатели (светодиоды) выдают инфракрасное излучение, проходящее через ветровое стекло и отражающееся его внешней стороной. Диоды-приемники (фотодиоды) регистрируют интенсивность отраженного излучения.

Угол, под которым направлено излучение, выбран так, что при отсутствии дождя внешней стороной стекла (граница стекла и воздуха) отражается 100% излучения. При сухой поверхности стекла инфракрасное излучение доходит до диода-приемника практически без уменьшения интенсивности (полное отражение).

При мокром стекле инфракрасное излучение поглощается каплями воды и доходит до диода-приемника только частично (частичное отражение). Зарегистрированная интенсивность излучения зависит от интенсивности дождя, т. к. дождевые капли частично препятствуют отражению от поверхности стекла. Чем более влажным становится стекло, тем ниже процент отражения.

Доля отраженного света является управляющей величиной для интервального таймера стеклоочистителей. С ее помощью сенсор дождя регулирует в зависимости от «измеренного» количества осадков скорость стеклоочистителя.

Датчик дождя не поддается диагностике.

Если во время работы стеклоочистителей регистрируется неисправность, стеклоочистители продолжают работать с последней установленной скоростью.

В некоторых автомобилях при выполнении перечисленных ниже условий производится автоматическая калибровка сенсора:

  1. В старых моделях после включения автоматического режима стеклоочистителя происходит инициализация, при которой стеклоочистители один раз приводятся в действие. Таким образом определяется фактическое состояние наружной поверхности стекла (например, потертости стекла от мелких камней и песка) или возможное стойкое (не удаляемое щетками) загрязнение рабочей зоны, которые учитываются при дальнейшей работе.
  2. В новых моделях автоматическая калибровка выполняется, только если выключатель стеклоочистителя перед включением зажигания находился не в положении автоматического режима.

В зависимости от автомобиля и оснащения можно настроить чувствительность сенсора дождя. Соответствующие указания содержатся в руководстве по эксплуатации.

В автомобилях с отражающим инфракрасное излучение ветровым стеклом «Solar Reflect» (атермальное стекло) установлен модуль сенсора освещенности/дождя, учитывающий покрытие стекла. Такой модуль нельзя заменять модулем для автомобилей без отражающего инфракрасное излучение ветрового стекла, т. к. при этом не будет обеспечена корректная работа сенсора дождя.

Датчик абсолютного давления во впускном коллекторе (MAP)

Место установки во впускном тракте. Физический принцип действия: упругая мембрана с тензорезисторами или пьезодатчик.

Датчик абсолютного давления

MAP измеряет текущее абсолютное давление во впускном коллекторе. В зависимости от абсолютного давления во впускном коллекторе изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0 – 4,8 В. При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии),цифровым мультиметром DMM и осциллографом. Сигнал отображается в регистраторе данных.

Для некоторых модификаций автомобилей регистратор данных вместо (или наряду с) индикацией в вольтах показывает текущее давление во впускном коллекторе в барах. В этом случае простую проверку MAP можно выполнить с помощью ручного насоса:

  1. Подключите ручной насос к датчику MAP (при необходимости, снимите для этого MAP).
  2. В зависимости от типа двигателя (бензиновый или дизельный) в несколько этапов создайте либо разрежение (для бензинового двигателя), либо избыточное давление (для дизельного двигателя).
  3. Значения на указателе ручного насоса должны совпадать со значениями регистратора данных.

В автомобилях с системами EEC IV и частично с EEC V измеренное MAP давление выдается в виде частотно модулированного сигнала (Гц).

Трещины на корпусе или внутренние повреждения могут привести к тому, что при правильной частоте сигнал будет иметь недостаточную величину амплитуды. С помощью осциллографа можно проверить величину амплитуды (заданное значение примерно 5 В). Вместо простых MAP часто используются датчики MAPT. При этом сенсор IAT интегрирован в MAP.

Значения MAP

Примечание: Показания изменяются в зависимости от атмосферного давления (обычно составляет от 920 до 1028 бар), поэтому измеренные значения могут несколько отличаться.

Датчик качества окружающего воздуха

Место установки в корпусе отопителя/испарителя на впуске свежего воздуха. Физический принцип действия: принцип работы гальванических элементов.

Сенсор регистрирует вредные вещества в окружающем воздухе, которые попадают в салон через систему вентиляции. Распознавание вредных веществ базируется на измерении сопротивления подогреваемого измерительного элемента из окиси олова.

Датчик качества воздуха

Рабочий диапазон: напряжение питания примерно 12 В. Тип сигнала: сигнал PWM 5В. Частота 50 Гц ± 2%. При неисправности заносится код ошибки (DTC). Значения отображается в регистраторе данных. Возможна проверка осциллографом.

Сигнал зонда качества окружающего воздуха игнорируется в течение первых 80 секунд после включения системы кондиционирования.

Датчик занятости и определения нагрузки на сиденье

Место установки: встроен в сиденье переднего пассажира. Физический принцип действия: изменение сопротивления. Напряжение питания примерно 12 В. Тип сигнала: цифровой ВКЛ/ВЫКЛ. Сенсор определяет, занято ли сиденье переднего пассажира.

Датчик определения нагрузки на сиденье

Система состоит из встроенного в сиденье сенсорного коврика, в который встроено множество чувствительных элементов. Эти чувствительные элементы имеют собственный модуль управления, расположенный под сиденьем пассажира.

Сенсор занятости и определения нагрузки на сиденье непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса. В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода неисправности поясняет суть неисправности при диагностике и процедуре проверки.

Если сиденье переднего пассажира не занято или на нем находится легкий объект, в модуль управления подушек безопасности передается сигнал «сиденье не занято», что приводит к отключению подушки безопасности переднего пассажира.

При незанятом сиденье и вставленном в замок ремня безопасности (например, при установке детского сиденья) загорается контрольная лампа «отключена подушка безопасности переднего пассажира». Сенсор можно поменять только вместе с элементом из вспененного материала. Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик занятости сиденья

Место установки: встроен в сиденье переднего пассажира. Физический принцип действия: изменение сопротивления. Напряжение питания примерно 12 В, Тип сигнала: цифровой ВКЛ/ВЫКЛ.

Датчик занятости сиденья

Сенсор занятости сиденья состоит из встроенной в подушку сиденья сенсорной ленты и, в зависимости от модификации, отдельного модуля распознавания занятости сиденья, который анализирует сигналы и передает их в модуль управления SRS.

Модуль распознавания занятости сиденья не встраивается в сиденье (находится снаружи). Зонд распознает наличие человека на сиденье переднего пассажира. При превышении определенного давления на сенсор генерируется цифровой сигнал.

Сенсор непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса. Его можно заменить только вместе с элементом из вспененного материала.В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода неисправности поясняет суть неисправности при диагностике и процедуре проверки.

Сенсор занятости сиденья используется на автомобилях, оснащенных сигнальной лампой ремня переднего пассажира. Отключение подушки безопасности переднего пассажира не выполняется.

Датчик положения сиденья

Место установки под сиденьем водителя на внутренней направляющей сиденья. Физический принцип действия: эффект Холла. Напряжение питания примерно 5 В. Тип сигнала: прямоугольный ВКЛ/ВЫКЛ.

Датчик положения сиденья

Зонд определяет продольное положение сиденья водителя. Когда сиденье находится в переднем положении, металлическая пластина входит в датчик. Это влияет на магнитное поле, в результате генерируется сигнал прямоугольной формы.

Зонд положения сиденья непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса.

Принцип работы датчика положения

В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода поясняет суть неисправности при диагностике и процедуре проверки.

Датчик интенсивности солнечного излучения

Место установки на передней части панели приборов (в автомобилях с EATC (электронный автоматический климат-контроль) и SATC (Полуавтоматическое управление температурой)).

Физический принцип действия: фотогальванический. Датчик измеряет интенсивность солнечного излучения. Чем большую интенсивность солнечного излучения регистрирует датчик, тем меньше его сопротивление.

Датчик интенсивности излучения

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. Сопротивление: светло: 0 — 1 кОм; темно: > 4,5 МОм.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Сигнал отображается в регистраторе данных. Рекомендуется отображать сигнал в виде гистограммы.

При проверке необходимо помнить, что даже при прямом солнечном свете может быть отображено меньшее значение, чем ожидалось.

Сигнал датчика интенсивности излучения

Например, при освещении сильными лампами (не неоновые лампы) может при определенных обстоятельствах быть достигнуто большее значение, чем при солнечном свете.

Если сенсор экранирован от света, то должно быть показано соответствующее максимальное значение (темно). Индикация может быть числовой или процентной.

Датчики положения (перемещения)

Датчики положения, как правило, интегрированы непосредственно в исполнительный механизм (устройство) и напрямую связаны с исполнительным механизмом (устройством).

Датчик перемещения

Физический принцип действия: потенциометр со скользящим контактом или индуктивный. Устанавливаются преимущественно в исполнительных механизмах, положение в которых требуется определить непосредственным измерением, например:

  • положение вакуумного клапана EGR;
  • положение электрического клапана EGR;
  • положение дроссельной заслонки с электронным приводом;
  • положение направляющих лопаток турбокомпрессора (турбокомпрессор с изменяемой геометрией в автомобилях с двигателями, отвечающими нормам токсичности ОГ IV);
  • положение сцепления (автомобили с автоматизированной коробкой передач).

Сенсоры положения выдают соответствующему модулю управления ответный сигнал (сигнал обратной связи) о текущем положении исполнительного механизма. Таким образом образуется замкнутая цепь системы автоматического регулирования.

Возможности проверки зависят от физического принципа работы, а также от их использования в системе. По этой причине об этих датчиках рассказывается в описании соответствующего исполнительного устройства в технической информации.

Датчик положения воздушной заслонки (дизельные двигатели)

Место установки во впускном тракте на корпусе воздушной заслонки. Физический принцип действия: потенциометр со скользящим контактом или индуктивный. Опорное напряжение примерно 5 В.

Датчик воздушной заслонки

В отличие от большинства бензиновых двигателей (в которых дроссельная заслонка постоянно используется для регулировки мощности) воздушная заслонка дизельных двигателей используется только при определенных условиях.

При закрывании воздушной заслонки скользящий контакт перемещается по дорожке потенциометра. Сопротивление уменьшается при закрывании воздушной заслонки пропорционально изменению ее положения.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии), цифровым мультиметром DMM и осциллографом. Значения напряжения отображаются в регистраторе данных.

Проверку можно выполнить с помощью ручного вакуумного насоса и регистратора данных. Для проверки подключите ручной вакуумный насос к штуцеру вакуумного привода воздушной заслонки.

Сигнал датчика положения

С помощью осциллографа можно проверить непрерывность и равномерность характеристики сигнала датчика положения воздушной заслонки. Для этого с помощью ручного вакуумного насоса следует плавно перевести воздушную заслонку из положения «полностью закрыта» в положение «полностью открыта». При этом напряжение на осциллографе также должно изменяться плавно и непрерывно.

Если напряжение меняется скачкообразно, или имеются пики напряжения, выходящие из допустимого диапазона напряжения, это означает, что сенсор положения воздушной заслонки неисправен.

Микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться при прогретом двигателе.

Датчик температуры испарителя

Место установки: на испарителе. Физический принцип действия: NTC-резистор. Назначение/принцип действия: измеряет температуру поверхности охлаждающих ребер испарителя. В зависимости от температуры изменяется сопротивление, а следовательно, падение напряжения на на измерительном элементе.

Датчик температуры испарителя

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,9 В. При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

Характеристика датчика температуры

Ультразвуковой датчик системы помощи при парковке

Место установки в переднем или заднем бампере. Ультразвуковые датчики системы помощи при парковке измеряют расстояние между местом установки датчика и препятствием. В зависимости от измеренного расстояния он выдает цифровой частотно модулированный сигнал. Чем меньше расстояние, тем выше частота.

Ультразвуковой датчик парковки

Напряжение питания примерно 8 В / 12 В. Тип сигнала: цифровой. Частота 46,5 кГц – 50 кГц. Область измерений: 30 см – макс. 150 см.

В регистраторе данных рекомендуется отображать вид сигналы гистограммой. Форма бампера определяет разное расстояние между препятствием и внешними/внутренними датчиками парктроника автомобиля.

Значения соответствуют расстоянию до препятствия, включая определенное отклонение, которое из соображений безопасности включается в расчеты.

Сигналы датчиков парковки

Системы, в которых для управления помощью при парковке используется отдельный модуль, можно проверить с помощью интегрированной самодиагностики.

В некоторых системах для этого нужно активировать систему помощи при парковке (Valeo) или перед включением отсоединить кодирующий разъем (Bosch). Подробное описание действий по запуску теста можно найти в руководстве по обслуживанию автомобиля.

Работу сенсора можно также проверить легким прикосновением к активированному сенсору, при этом палец должен ощутить вибрацию поверхности.

Кроме того, следует следить за тем, чтобы сенсоры находились в безупречном состоянии и не были загрязнены. Слой лакокрасочного покрытия должен иметь точно определенную толщину.

При сильном дожде и/или физически неблагоприятных условиях отражения не гарантировано стопроцентное распознавание приближающихся препятствий, т. к. ультразвуковые волны могут отклоняться.

Лямбда-зонды – датчики содержания кислорода в отработавших газах (HO2S)

Место установки в выпускной системе, в зависимости от назначения перед или за трехкомпонентным каталитическим нейтрализатором.

Лямбда-зонды

Примечание: В автомобилях с системой прямого (непосредственного) впрыска за катализатором NOx находится третий датчик HO2S.

Физический принцип действия: гальванический элемент. HO2S измеряет содержание оставшегося кислорода в потоке отработанных газов. Его сигнал позволяет установить, какая смесь сжигается – богатая или бедная.

Используемые в автомобилях датчики кислорода содержат нагревательный элемент (резистор) для обеспечения работы при низких температурах отработавших газов. Соединение с массой осуществляется через разъем соответствующего PCM. Электропитание подается на лямбда-зонд только для работы его нагревательного элемента (резистора).

Триггерный (переключающийся) HO2S (NTK)

Элемент зонда состоит из керамического тела (двуокись циркония), на который снаружи и изнутри нанесены пропускающие газ слои платины (электроды).

Триггерный датчик кислорода

Зонд омывается снаружи отработавшими газами с малой концентрацией кислорода. Внутрь зонда поступает наружный воздух, содержащий 21% кислорода.

При температуре выше 300 °C элемент зонда начинает проводить ионы кислорода (появляется ЭДС).

При сжигании бедной смеси в отработавших газах содержится высокая доля остаточного кислорода, при сжигании богатой смеси – низкая доля остаточного кислорода. Это регистрируется триггерным (переключающимся) HO2S – вызывает в нем перемещение ионов.

Рабочий диапазон триггерного HO2S

Созданный ионами ток обуславливает скачкообразный рост или падение напряжения зонда. Этот скачок напряжения используется для так называемого лямбда-регулирования (регулирования состава смеси).

В соответствии с долей кислорода в потоке отработавших газов между электродами лямбда-зонда появляется разность потенциалов в диапазоне от 0,1 В (бедная смесь) до 0,9 В (богатая смесь).

Напряжение питания нагревательного элемента примерно 12 В. Тип сигнала: пульсирующее постоянное напряжение: 0,1 – 0,9 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C примерно 5 Ом.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и осциллографом. Сигнал отображается в регистраторе данных.

Сигналы лямбда-зондов

На рисунке показаны сигналы лямбда-зондов HO2S, установленных до (O2S11) и после (O2S12) каталитического нейтрализатора.

За счет нейтрализации отработавших газов в трехкомпонентном каталитическом нейтрализаторе изменение напряжения на лямбда-зонде HO2S после катализатора невелико (условие: трехкомпонентный каталитический нейтрализатор работает эффективно).

Работу HO2S можно проверить с помощью тестера HO2S. Для этого необходимо соблюдать рекомендации производителя тестера HO2S.

Условия проведения измерений: двигатель прогрет до рабочей температуры. Измерение необходимо выполнять при работающем двигателе. Если нет тестера HO2S, то указанные значения напряжения можно измерить также с помощью аналогового мультиметра DDM. Для этого с помощью соответствующего кабель-адаптера необходимо соединить PCM, жгут проводов и диагностический прибор.

Планарный (с пластинчатым чувствительным элементом) триггерный (переключающийся) лямбда-зонд HO2S

Планарный (с пластинчатым чувствительным элементом) триггерный (переключающийся) лямбда-зонд HO2S (Bosch) – это усовершенствованный триггерный лямбда-зонд HO2S (NTK). Он имеет такую же скачкообразно переключающуюся характеристику, что и обычный триггерный лямбда-зонд HO2S (NTK).

Обозначение «планарный» для лямбда-зонда HO2S означает, что твердый электролит чувствительного элемента состоит из плоских пленок. Планарный чувствительный элемент зонда имеет форму вытянутой пластины прямоугольного сечения.

Планарный датчик кислорода

Под оболочкой лямбда-зонда HO2S заключен плоский (планарный) керамический корпус с чувствительным элементом. Внешняя сторона электрода омывается потоком отработавших газов, внутренняя соединена с сообщающимся с атмосферой воздушным каналом (наружный воздух). Разница в концентрации кислорода между внешним и внутренним электродами обуславливает возникновения разности потенциалов на электродах.

Напряжение накала примерно 11 — 14 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C в диапазоне 7 – 15 Ом. Тип сигнала: пульсирующее постоянное напряжение: 0,1 – 0,9 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии), цифровым мультиметром (аналоговая индикация) и осциллографом. Сигнал отображается в регистраторе данных.

Работу HO2S можно проверить с помощью тестера HO2S. Для этого необходимо соблюдать рекомендации производителя тестера HO2S. Условия проведения измерений: двигатель прогрет до рабочей температуры. Измерение необходимо выполнять при работающем двигателе.

Планарный (с пластинчатым чувствительным элементом) широкополосный лямбда-зонд HO2S

Планарный широкополосный лямбда-зонд позволяет выполнять измерения в отработавших газах, не соответствующих стехиометрическому соотношению (лямбда = 1).

Планарный широкополосный датчик кислорода

Широкополосный HO2S может измерять коэффициент избытка воздуха лямбда в диапазоне 0,7 – 2,8, причем он выдает однозначный, непрерывный сигнал тока (так называемый ток накачки – ток, потребляемый элементом кислородной накачки, об этом см. ниже).

Это свойство широкополосного лямбда-зонда HO2S позволяет использовать его не только в системах управления бензиновых двигателей, работающих на почти стехиометрической (ни бедной, ни богатой) смеси (лямбда = 1), но и в системах управления бензиновых двигателей, работающих на обедненных смесях (лямбда > 1).

Пример: планарный широкополосный лямбда-зонд HO2S в системе прямого (непосредственного) впрыска бензина.

Устройство планарного датчика кислорода

Широкополосный HO2S состоит из гальванического элемента Нернста и элемента кислородной накачки, транспортирующего ионы кислорода. Между элементом кислородной накачки и гальваническим элементом Нернста есть диффузионный зазор, в который поступают отработавшие газы. Он является областью измерения.

Гальванический элемент Нернста с одной стороны связан каналом с наружным воздухом, а с другой стороны с областью измерения. Он работает как обычный триггерный лямбда-зонд, выдавая сигнал, соответствующий коэффициенту избытка воздуха в области измерения.

В область измерения организовывается такой приток ионов кислорода, чтобы коэффициент избытка воздуха лямбда в ней был равен 1 (это делается с помощью элемента кислородной накачки).

Электронный блок, запитываемый опорным напряжением, анализирует создаваемую гальваническим элементом разность потенциалов и управляет током накачки ионов кислорода с целью поддержания этой разности потенциалов на определенном неизменном уровне. Генерируемая таким образом величина тока накачки и является выходным сигналом лямбда-зонда, по которому судят о концентрации кислорода в отработавших газах.

При наличии отработавших газов с большим содержанием кислорода (работа двигателя на бедных смесях) основной элемент кислородной накачки управляется таким образом, что он откачивает ионы кислорода из области измерения. Управление осуществляет электронный блок; направление тока при этом положительное.

Ток накачки

При наличии отработавших газов с малым содержанием кислорода (работа двигателя на богатых смесях) элемент кислородной накачки управляется таким образом, что он накачивает ионы кислорода в измерительное пространство (электрический ток в обратную сторону). Управление осуществляет электронный блок; направление тока при этом отрицательное.

По току накачки однозначно определяется состав смеси. Коэффициенту избытка воздуха лямбда = 1 (14,7 кг воздуха на 1 кг топлива) соответствует ток накачки 0 мА.

Напряжение питания нагревательного элемента примерно 11 – 14 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C составляет 2,4 – 4,1 Ом. Ток/тип сигнала: аналоговый сигнал постоянного тока, мА.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром (аналоговая индикация). В регистраторе данных отображается только значение лямбда широкополосного HO2S.

Датчик давления газа регулятора давления газа

Место установки на фильтре высокого давления регулятора давления газа. Физический принцип действия: упругая мембрана с тензорезисторами.

Датчик регулятора газа

Измеряет давление со стороны высокого давления газового оборудования CNG (сжатый природный газ).

В зависимости от давления изменяется сопротивление, а следовательно, падение напряжения на датчике. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В.

Характеристика датчика давления

Проверяется цифровым мультиметром напряжение сигнала. Газовое оборудование можно проверить только с помощью специального диагностического программного обеспечения производителя газового оборудования (BRC).

Датчик давления и температуры в газовом коллекторе

Место установки в газовом коллекторе системы впрыска. Физический принцип действия датчика давления газа: упругая мембрана с тензорезисторами; датчика температуры газа: NTC-резистор.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение 0,5 – 4,5 В. Проверяется цифровым мультиметром напряжение сигнала.

Датчик газового коллектора

Датчик давления газа измеряет давление со стороны низкого давления газового оборудования. В зависимости от давления изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Датчик температуры газа измеряет температуру газа со стороны низкого давления газового оборудования. В зависимости от температуры изменяется сопротивление, а следовательно, падение напряжения на сенсоре.

Газовое оборудование можно проверить только с помощью специального программного обеспечения для программирования и диагностики производителя газового оборудования (BRC). Сигналы можно проверить с помощью регистратора данных. При выходе датчика из строя в модуле управления подачей газа сохраняется код DTC. Его можно считать и удалить с программного обеспечения для программирования и диагностики.

Датчик давления газа

Место установки на задней стенке моторного отсека с левой стороны или на панели замка капота. Физический принцип действия: упругая мембрана с пьезоэлементом.

Датчик давления газа

Назначение: измеряет давление со стороны низкого давления газового оборудования. В зависимости от давления изменяется сопротивление, а следовательно, падение напряжения на датчике. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение 0,5 – 4,5 В. Проверяется цифровым мультиметром напряжение сигнала.

Газовое оборудование можно проверить только с помощью специального диагностического программного обеспечения производителя газового оборудования (BRC). Сигнал можно проверить с помощью функции регистрации данных. При выходе из строя в модуле управления подачей газа сохраняется код DTC. Его можно считать и удалить с программного обеспечения для программирования и диагностики.

Датчик температуры газа

Место установки в газовом коллекторе системы впрыска. Физический принцип действия: NTC-резистор. Назначение: измеряет температуру газа со стороны низкого давления газового оборудования.

Датчик температуры газа

В зависимости от температуры изменяется сопротивление, а следовательно, падение напряжения на сенсоре. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение 0,5 – 4,5 В. Проверяется цифровым мультиметром напряжение сигнала.

Газовое оборудование можно проверить только с помощью специального диагностического программного обеспечения производителя газового оборудования (BRC). Сигнал можно проверить с помощью функции регистрации данных.

При выходе датчика из строя в модуле управления подачей газа сохраняется код DTC. Его можно считать и удалить с программного обеспечения для программирования и диагностики.

Датчик уровня газа и блок индикации

Место установки в блоке газовых клапанов в системах LPG или на регуляторе давления газа в системах CNG. Физический принцип действия: потенциометр со скользящим контактом

.
Датчик уровня газа

В системах LPG регистрирует уровень газа в кольцевом резервуаре для газа. В системах CNG регистрирует давление со стороны высокого давления.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. Сопротивление 0 — 90 Ом. Проверяется цифровым мультиметром напряжение сигнала.

Газовое оборудование можно проверить только с помощью специального диагностического программного обеспечения производителя газового оборудования (BRC). Сигнал можно проверить с помощью функции регистрации данных. При выходе датчика из строя в модуле управления подачей газа сохраняется код DTC. Его можно считать и удалить с программного обеспечения для программирования и диагностики.

Для точной проверки необходимо снять датчик уровня газа и блок индикации, и проверить сопротивление потенциометра со скользящим контактом. При перемещении скользящего контакта во всем диапазоне измерения сопротивление должно изменяться непрерывно и плавно. В качестве вспомогательного средства дополнительно требуется постоянный магнит, чтобы отрегулировать индикацию.

Заключение

Электронное управление и регулирование открывает множество возможностей. Оно улучшает безопасность движения и комфорт водителя с пассажирами. Одновременно с этим машина становится все более экономичной и экологичной.

Современный автомобиль уже невозможно представить без электронных блоков управления со своими датчиками и исполнительными устройствами. Все важные функции автомобиля управляются и регулируются посредством компактных электронных блоков и датчики автомобиля обеспечивают эту работу.

Подробно изучить принципы работы и электронное устройство датчиков автомобиля можно в главе “основы автоэлектрики” статьи “Компьютерная диагностика: основы обучения”.

Стремительно развиваются системы управления двигателем и коробкой передач, системы обеспечения безопасности, а также множество систем обеспечения комфорта. Этому развитию нет конца. Подписывайтесь на рассылку новых статей, чтобы быть в курсе последних разработок.

С уважением, Олег!

Справочник по автомобильным датчикам, реле и переключателям

Справочник Автомобильные датчики. Реле и переключатели содержит свединия о принципе действия, устройстве и характеристиках автомобильных датчиков легковых автомобилей.(датчиков контрольных приборов, аварийных режимах работы системм автомобиля, системм зажигания и системм управления двигателя), электромагнитных и электронных реле, выключателей, переключателей и блоков реле и предохранителей. Приведены практические рекомендации по диагностике и устранению неисправностей электрооборудования автомобилей.

Название: Автомобильные датчики, реле и переключатели
Издательство: За рулем
Автор: Литвиненко В.В., Майструк А.П.
Год: 2004
Страниц: 176
Формат: djvu
Язык: русский
Размер: 3.78 Мб

Скачать Автомобильные датчики. Реле и переключатели

Файл обновлен — Ноябрь 2021

(Игры для нетбуков, ноутбук, компьютер, антивирус, скачать, рингтоны, музыка, песни, mp3, мультфильмы, навигатор, карты, софт, виндовс)

  • Скачать книгу по автодатчикам
  • Скачать каталог по датчикам и реле иномарок / Switches and Sensors Catalogue Tridon
  • Системы безопасности №1 ( февраль-март 2013 )
  • Автоэлектроника. Зарядные и пускозарядные устройства для автомобилей. Скачать
  • Скачать Большую книгу автомобилиста
  • Книга Автомобильная электроника — проста в изготовлении!
  • Справочники по Устройству и ремонту электронных приборов автомобиля
  • Книга по тюнингу автомобиля скачать
  • Книга диагностика электрооборудования автомобилей и тракторов

Поделитесь этой страницей с друзьями:

Источник

Все основные датчики автомобиля: устройство, параметры и работа

В статье описаны основные датчики автомобиля, их типы и параметры, а также принцип действия, устройство и назначение датчиков. В современном автомобиле используют разные по конструкции датчики. Являясь «органами восприятия» автомобилей, датчики превращают различные входные величины в электрические сигналы, которые используются блоками управления систем управления двигателем, обеспечения безопасности и комфорта для функций управления и регулирования.

Применение в автомобиле в качестве периферийных устройств датчики образуют интерфейсы между автомобилем с его сложными функциями силового агрегата, тормозов, шасси, обеспечения комфорта и безопасности, а также навигации и цифровым электронным блоком управления в качестве обрабатывающего устройства.

Как правило, адаптивное переключение переводит сигналы датчиков в требуемую для блока управления стандартизированную форму. Из-за разнообразия контролируемых параметров, имеющих разные физические величины, устройство и принципы работы датчиков автомобиля различаются.

Датчики автомобиля: устройство и назначение

Понятие «датчик» по своему значению равнозначно понятиям ”сенсор”, «зонд» и «чувствительный элемент». Датчики автомобиля преобразуют физические или химические (по большей части, неэлектрические) величины с учетом возмущающих воздействий в электрическую величину. Это зачастую также происходит через другие неэлектрические промежуточные этапы. В качестве электрических величин здесь действуют:

  1. Ток и напряжение.
  2. Амплитуды тока/напряжения.
  3. Частота.
  4. Период.
  5. Фаза.
  6. Длительность импульса электрического колебания.

В качестве электрических параметров здесь действуют:

Работа датчиков автомобиля контролируются блоками управления соответствующей системы. При возникновении неисправностей датчиков информация об этом сохраняется в блоке управления в виде кодов неисправности. Диагностика датчиков автомобиля осуществляется с помощью анализа показаний, измерения физических параметров и проверки достоверности сигналов.

Неисправности в системах и их причины должны, прежде всего, определяться с помощью диагностики на базе признака неисправности (направленная диагностика). В статье для наглядности, а также для лучшего понимания функционирования датчиков приводятся таблицы и схемы с данными и значениями.

Величина значений указана для деталей фирмы Visteon – это крупный производитель, который изготавливает большое количество продукции для автомобилестроительных компаний, таких как: Ford, General Motors, Chrysler, Volvo, Nissan, Renault, Volkswagen, Hyundai, Audi и др. Значения параметров не заменяют данные в актуальной литературе для станций технического обслуживания.

Датчик температуры отработавших газов

Место установки зонда в системе выпуска ОГ перед катализатором или за ним. В автомобилях с турбонаддувом устанавливается рядом с турбонагнетателем в обратном или выпускном трубопроводе.

Физический принцип действия: PTC (положительный температурный коэффициент) резистор или NTC (отрицательный температурный коэффициент) резистор.

Назначение/принцип действия: измеряет температуру отработавших газов. В зависимости от температуры отработавших газов изменяется сопротивление, а следовательно, падение напряжения на зонде.

Температура, °C Сопротивление, Ом Напряжение, В
-40 460467979 5,000
-20 102719922 5,000
0 28547913 5,000
10 16106769 5,000
20 9449513 4,999
50 2326245 4,998
100 371255 4,987
150 91432 4,946
200 30282 4,840
250 12389 4,627
300 5924 4,278
400 1772 3,196
500 724 2,100
600 363 1,332
700 207 0,857
800 131 0,579
900 89 0,409
1000 64 0,303

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,2 – 4,8 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Датчик температуры воздуха на впуске (IAT)

Место установки во впускном тракте – на корпусе воздушного фильтра или за ним. Это зависит от конструкции автомобиля. Физический принцип действия NTC-резистор. IAT измеряет текущую температуру воздуха на впуске.

В зависимости от температуры воздуха на впуске изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала – постоянное напряжение: 0,2 – 4,5 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Температура, °C Сопротивление, кОм Напряжение, В
– 40 860 – 900 4,51 – 4,54
– 30 501 – 645 4,46 – 4,49
– 20 253 – 289 4,31 – 4,35
– 10 170 – 196 4,17 – 4,23
0 89 – 102 3,82 – 3,92
10 62,0 – 70,0 3,5 – 3,7
20 35,0 – 40,0 3,0 – 3,2
30 25,0 – 28,0 2,6 – 2,8
40 15,0 – 17,0 2,0 – 2,2
50 11,0 – 13,0 1,7 – 1,9
60 7,1 – 8,0 1,2 – 1,4
70 5,0 – 6,2 0,9 – 1,2
80 3,0 – 4,5 0,6 – 0,9
90 2,4 – 3,5 0,5 – 0,7
100 1,9 – 2,5 0,4 – 0,5
110 1,5 – 1,7 0,3 – 0,4
120 1,0 – 1,3 0,2 – 0,3

IAT часто интегрирован в следующие узлы: в датчик MAF (массовый расход воздуха) (в этом случае обозначается как MAFT (массовый расход и температура воздуха)) и в датчик MAP (абсолютное давление в коллекторе) (в этом случае обозначается как MAPT (температура и абсолютное давление во впускном коллекторе)).

Свойства интегрированного IAT идентичны свойствам отдельного зонда IAT. В некоторых системах сигнал IAT используется также для расчета температуры электролита аккумуляторной батареи.

Датчик атмосферного давления (BARO)

Место установки: BARO интегрирован в PCM. В некоторых автомобилях устанавливается в салоне, за панелью приборов, на кронштейне усилителя передней стойки.

Физический принцип действия: упругая мембрана с тензорезисторами. BARO измеряет атмосферное давление. В зависимости от атмосферного давления изменяется сопротивление, а следовательно, и падение напряжения на зонде.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 2,2 – 4,4 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии). При установке BARO в модуле PCM, цифровым мультиметром проверить невозможно. Параметры BARO в одних системах отображается в регистраторе данных в миллибарах (мб), в других – в герцах (Гц).

В некоторых системах значение BARO отображается в регистраторе данных, хотя датчик BARO не установлен. Это значение рассчитывается PCM.

Давление должно оставаться постоянным, независимо от режима работы двигателя/режима движения автомобиля, оно может пропорционально изменяться только при соответствующем изменении положения автомобиля относительно уровня моря (чем выше, тем ниже давление).

Датчик температуры наружного воздуха

Датчик наружной температуры установлен в передней части автомобиля, за бампером. Физический принцип действия: NTC-резистор. Измеряет температуру воздуха снаружи автомобиля.

В зависимости от температуры наружного воздуха изменяется сопротивление, а следовательно, и падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт.

Температура, °C Сопротивление, кОм
-40 примерно 9,8
-30 ок. 9,0
-20 примерно 7,9
-10 ок. 6,6
0 примерно 5,2
5 примерно 4,5
10 примерно 3,9
15 примерно 3,3
20 примерно 2,8
25 примерно 2,4
30 примерно 2,0
40 ок. 1,4
50 ок. 0,9
60 ок. 0,7
65 ок. 0,6

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Акселерометр (датчик поперечного/продольного ускорения)

Место установки на панели пола в салоне на продольной или соответственно поперечной оси. Физический принцип действия: емкостной.

Акселерометры измеряют ускорение автомобиля в продольном или соответственно поперечном направлении. Чем больше зарегистрированное датчиком ускорение, тем больше сигнал.

Акселерометры непрерывно проверяются модулем ABS (антиблокировочная система тормозов)/системы поддержания курсовой устойчивости. При проверке акселерометра с помощью регистратора данных необходимо помнить, что датчик регистрирует и отображает малейшее сотрясение.

Рабочий диапазон: напряжение питания примерно 12 вольт. Тип сигнала: цифровой протокол CAN 5 вольт. Частота 500 Kбит/с.

При неисправности заносится код ошибки. Проверяется направленной диагностикой (при наличии). Возможна только общая проверка работоспособности. Оценка сигналов с помощью компьютерной диагностики невозможна.

В автомобилях старых моделей акселерометр может быть установлен как отдельный узел. В некоторых системах после замены акселерометра может возникнуть необходимость его калибровки.

Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик износа тормозных колодок

Место установки на тормозной колодке (только дисковые тормоза). Физический принцип действия: омическое сопротивление.

Датчик износа тормозных колодок состоит из маленькой проволочной петли, встроенной в тормозную накладку внутренней тормозной колодки.

Когда фрикционный слой тормозной накладки износится до определенной степени, это приведет, в зависимости от системы:

  • A: к разрыву электрической цепи соединения с массой;
  • B: к замыканию на массу.

Опорное напряжение примерно 5 В. Тип сигнала: ВКЛ/ВЫКЛ. Сопротивление меньше 0,5 Ом, проволочная петля не разорвана; > 10 кОм, проволочная петля разорвана.

Проверка возможна цифровым мультиметром DMM. На автомобилях старых моделей в схему могут быть включены сопротивления, отображающие прерывание подачи напряжения с помощью различных индикаторов в комбинации приборов (контрольная лампа мигает или горит постоянно).

Датчик давления в тормозной системе

Место установки: в зависимости от модификации установленного модуля ABS/системы поддержания курсовой устойчивости сенсоры давления устанавливаются снаружи на главном тормозном цилиндре или в HCU.

Физический принцип действия: емкостной, пьезо или мембранные сенсоры с тензорезисторами.

Назначение/принцип действия: измеряет давление в гидравлическом тормозном контуре. Сенсор генерирует электрический сигнал, пропорциональный давлению.

Рабочий диапазон: напряжение питания примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт. Датчик давления непрерывно проверяется модулем ABS/системы поддержания курсовой устойчивости автомобиля.

На диаграмме вид сигнала давления в тормозной системе при двукратном нажатии педали тормоза (отображение на экране регистратора данных).

Увеличение гидравлического давления на поршень приводит к перемещению подпружиненной подвижной пластины емкостного датчика давления.

Вызванное этим изменение емкости регистрируется и анализируется модулем ABS/системы поддержания курсовой устойчивости. При неисправности заносится код ошибки. Проверяется направленной диагностикой (при наличии). Мультиметром проверяется только не интегрированный в HCU датчик.

Пьезоэлектрический датчик давления состоит из пьезоэлемента, связанного через мембрану с тормозным контуром.

При росте давления в тормозной системе мембрана деформирует пьезоэлемент, что приводит к изменению напряжения на его электродах. Величина изменения напряжения анализируется модулем ABS/системы поддержания курсовой устойчивости.

Интегрированные в HCU сенсоры давления нельзя заменить отдельно. В некоторых системах сенсоры необходимо откалибровать после замены. Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик положения педали тормоза

Место установки на главном тормозном цилиндре (только в автомобилях с системами ABS открытого типа). Физический принцип действия: выключатель со скользящим контактом.

Назначение/принцип действия: определяется положение педали тормоза. Датчик положения педали тормоза имеет две дорожки скольжения. Одна из дорожек разделена на семь сегментов, при этом каждый сегмент соединен через сопротивление с одним из двух электрических контактов разъема.

Другая дорожка скольжения сплошная, она подключена ко второму контакту разъема. В зависимости от положения педали сопротивления поочередно включаются с помощью скользящего контакта.

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,5 – 4,5 вольт.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

Датчик удара (датчик ускорения)

На разные автомобили устанавливается от одного до пяти датчиков удара. Для разных подушек безопасности сенсоры устанавливаются в различных частях авто: в передней части автомобиля (передняя подушка безопасности), на днище автомобиля в области средней стойки (боковая подушка безопасности), на задней стойке (верхняя подушка безопасности при наличии более двух рядов сидений) или в модуле SRS (вспомогательная удерживающая система подушек и ремней безопасности).

Физический принцип действия: пьезо или емкостной. Сенсоры измеряют, в зависимости от места применения, поперечное или продольное ускорение автомобиля. В датчик встроен электронный блок обработки данных. В соответствии с ускорением передает в модуль SRS цифровые кодированные данные удара.

Датчики удара нельзя проверить в условиях сервиса. Можно проверить только жгут проводов. Обозначаются как ECS (электронный датчик удара). Сенсоры боковых подушек безопасности называются также датчиками бокового удара.

В некоторых системах после замены необходимо «обучать» или калибровать в модуле SRS. В некоторых системах сенсоры удара могут повторно использоваться после аварий, приведших к срабатыванию подушки безопасности. При этом обязательно следует соблюдать указания актуальной литературы для станций технического обслуживания.

Датчик угла поворота

Место установки: в ТНВД распределительного типа VP30/VP44. Физический принцип действия: эффект Холла. Зонд улавливает поворот задающего ротора, на котором выполнены мелкие зубья. В определенных местах зубья отсутствуют (специально рассчитанные промежутки).

Тип сигнала: сигнал прямоугольной формы. Частота зависит от скорости вращения ротора.

Сам датчик угла поворота проверить и заменить нельзя, т. к. он неразъемно соединен с модулем управления ТНВД (PCU). При неисправности необходимо полностью заменить ТНВД распределительного типа.

Датчик положения дроссельной заслонки (TP) (бензиновый двигатель)

Место установки во впускном тракте на корпусе дроссельной заслонки. Физический принцип действия: потенциометр со скользящим контактом.

При открытии дроссельной заслонки в датчике TP (положение дроссельной заслонки) контакт перемещается по дорожке резистора. Сопротивление растет пропорционально перемещению дроссельной заслонки в направлении WOT (полностью открытая дроссельная заслонка).

Рабочий диапазон: опорное напряжение примерно 5 вольт. Тип сигнала: постоянное напряжение: 0,6 – 4,8 В. При полность закрытой дроссельной заслонке напряжение примерно 0,8 вольт, открытой – примерно 4,7 В.

С помощью осциллографа можно проверить непрерывность и равномерность характеристики сигнала TP. Для этого нужно плавно переместить дроссельную заслонку из положения холостого хода в положение WOT. При этом напряжение на осциллографе также должно изменяться плавно и непрерывно.

Если напряжение меняется скачкообразно, или имеются пики напряжения (вызванные трещинами или загрязнением), выходящие из допустимого диапазона напряжения, это означает, что TP неисправен.

Примечание: Микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться на прогретом двигателе.

Датчик давления усилителя тормозов

Место установки на усилителе тормозов. Физический принцип действия: упругая мембрана с тензорезисторами.

Измеряет разрежение в усилителе тормозов. В зависимости от давления в усилителе тормозов изменяется сопротивление, а следовательно, падение напряжения на измерителе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,4 – 4,5 В. Для проверки при включенном зажигании несколько раз нажмите на педаль тормоза (для уменьшения разрежения в усилителе тормозов) – напряжение 3,5 – 4,5 В.

При работающем двигателе после нескольких нажатий на педаль акселератора (максимальное разрежение в усилителе тормозов) – напряжение 0,4 – 1,0 В.

Датчики разности давлений: расхода отработавших газов в системе рециркуляции / разности давлений в сажевом фильтре

Место установки в зависимости от назначения: датчик расхода отработавших газов в системе рециркуляции устанавливается между клапаном EGR (рециркуляция отработавших газов) и выпускным коллектором.

Назначение/принцип действия: регистрирует разность давлений в трубопроводе к клапану EGR или разность давлений перед за сажевым фильтром.

В трубопроводе предусмотрен дроссель (трубка Вентури). В зависимости от расхода отработавших газов, т. е. степени открытия клапана EGR, между концами дросселя возникает соответствующий перепад давлений.

Этот перепад (потеря давления) регистрируется датчиком расхода отработавших газов в системе рециркуляции и передается на PCM в виде электрического сигнала.

Датчик разности давлений в сажевом фильтре (фото ниже) с помощью трубопроводов подключается к штуцерам до и после сажевого фильтра. Физический принцип действия: упругая мембрана с тензорезисторами.

Сажевый фильтр оказывает определенное сопротивление потоку отработавших газов. При этом возникает разница давлений отработавших газов перед сажевым фильтром и после него.

В зависимости от разницы давлений изменяются сопротивления тензорезисторов. Это приводит к изменению напряжения. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В.

Работу зонда разности давлений в сажевом фильтре или расхода отработавших газов в системе рециркуляции можно проверить с помощью ручного насоса и регистратора данных следующим образом:

  1. Выбрать в регистраторе данных разность давлений в сажевом фильтре.
  2. С датчика разности давлений в сажевом фильтре снять шланг, ведущий к переднему штуцеру сажевого фильтра.
  3. Подключить к штуцеру датчика ручной насос и создать им определенное давление (например 300 мбар).
  4. Считать разность давлений в регистраторе данных. Считанное значение должно соответствовать установленному на ручном насосе значению.

Датчик скорости автомобиля (ДСА) (VSS)

Место установки ДСА на корпусе коробки передач (выходной вал). Физический принцип действия: эффект Холла или индуктивный (на автомобилях старых моделей).

Назначение/принцип действия: сенсор VSS регистрирует частоту вращения выходного вала коробки передач. В зависимости от принципа работы:

  • генерирует сигнал переменного напряжения (индуктивный зонд). Пропорционально частоте вращения изменяется напряжение и частота сигнала;
  • генерирует сигнал прямоугольной формы (эффект Холла). Изменяется частота сигнала. Напряжение питания и сигнала 12 В.

Вид сигнала зависит от установленного датчика, а также от коробки переключения передач.

В автомобилях новых моделей, оснащенных системой ABS, скорость автомобиля определяется с помощью датчиков скорости колес. VSS не устанавливается.

При этом индицируемый регистратором данных сигнал VSS рассчитывается PCM или генерируется зондом OSS.

Датчик положения педали акселератора (APP) с потенциометром

APP встроен в педаль акселератора. Физический принцип действия: потенциометр со скользящим контактом. APP определяет текущее положение педали акселератора.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0 – 4,5 В. Для контроля достоверности данных APP состоит из двух или трех датчиков. При нажатии на педаль акселератора вал поворачивается и скользящие контакты перемещаются по дорожкам потенциометров.

Дорожки потенциометра выполнены таким образом, что по мере перемещения по ним скользящих контактов сопротивления потенциометров плавно увеличиваются (или уменьшаются). Изменение сопротивления приводит к пропорциональному изменению напряжения, являющегося сигналом о положении педали акселератора.

Для надежного распознавания неполадок дополнительные датчики APP 2 и, при необходимости, APP 3 могут передавать дублирующий и/или отличающийся от APP 1 сигнал напряжения в PCM.

Примечание: Микротрещины и прочие неисправности могут привести к сбоям в работе датчика при низких температурах. Эти сбои могут не проявляться на прогретом двигателе.

Особенности APP с потенциометром со скользящими контактами: при измерении сопротивлений датчика следует учесть, что потенциометры со скользящим контактом восприимчивы к температуре, отклонения значений сопротивлений могут достигать 10%.

Индуктивный датчик положения педали акселератора (APP)

APP встроен в педаль акселератора. Индуктивный датчик APP определяет текущее положение педали акселератора. Для контроля достоверности данных APP состоит из двух или трех датчиков. Напряжение питания примерно 12 В.

Работа индуктивного датчика во многом аналогична работе трансформатора. Сначала необходимо преобразовать входное постоянное напряжение в переменное напряжение.

При нажатии педали акселератора в индуктивном APP поворачивается ротор. Он является магнитопроводом для индуцирования переменного напряжения во вторичной обмотке.

В результате переменное напряжение в первичной обмотке вызывает возникновение переменного напряжения во вторичной обмотке. При этом индукция во вторичной обмотке зависит от положения ротора:

  • педаль акселератора не нажата – небольшая индукция, т. е. малая амплитуда переменного напряжения;
  • педаль акселератора полностью нажата – сильная индукция, т. е. большая амплитуда переменного напряжения.

Чтобы модуль PCM мог использовать выдаваемый вторичной обмоткой сигнал переменного напряжения, его сначала необходимо преобразовать в цифровую форму – это выполняет блок обработки APP.

На автомобили в настоящее время устанавливают APP с двумя индуктивными датчиками. В соответствии с требованиями стратегии управления двигателем сигналы индуктивных сенсоров обрабатываются электронным блоком в APP следующим образом:

  • APP 1 = сигнал PWM;
  • APP 2 = аналоговый сигнал постоянного напряжения 0 – 5 В.

Не задействован – PWM с малой длительностью импульсов (малой скважностью).

Полностью задействован – PWM с большой длительностью импульсов (большой скважностью).

Датчик выбранной передачи (TR)

TR устанавливается в коробке передач (в блоке клапанов) или на коробке передач (вал переключения передач). Физический принцип действия: переключатель со скользящим контактом, эффект Холла или потенциометр с кодировкой напряжения.

TR регистрирует текущее положение рычага селектора. В зависимости от принципа работы в соответствующих положениях выполняется:

  1. C помощью выключателя замыкается соответствующая электрическая цепь.
  2. C помощью датчика Холла генерируется цифровой сигнал.
  3. C помощью изменения сопротивления задается изменение (кодирование) напряжения.

Проверка любого зонда TR возможна только в регистраторе данных. Индикация в регистраторе данных зависит от установленной на автомобиль АКПП (например, бесступенчатая коробка передач (вариатор), АКПП с возможностью переключать передачи вручную). Соответственно в регистраторе данных можно выполнить проверку:

  • датчика TR;
  • выключателя ручного переключения на рычаге селектора;
  • клавиш ручного переключения на рулевом колесе;
  • выключателя повышающей передачи (зимний режим) на рычаге селектора.

Положение рычага селектора или включенная вручную передача (в режима ручного переключения) может отображаться, в зависимости от оснащения автомобиля, также в комбинации приборов.

Примечание для TR со скользящим контактом: микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться при прогретом двигателе.

Даже при корректной индикации в регистраторе данных настройка троса между рычагом селектора и коробкой передач всегда должна выполняться с помощью специального инструмента, в соответствии с инструкциями, изложенных в руководствах для сервисных предприятий.

Датчик температуры трансмиссионной жидкости (TFT)

Место установки в картере автоматической коробки передач или в блоке управления коробкой передач. Физический принцип действия: NTC-резистор.

TFT измеряет текущую температуру трансмиссионной жидкости АКПП. В зависимости от температуры трансмиссионной жидкости изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Рабочий диапазон: опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. Интегрированные в блок управления коробкой передач датчики TFT нельзя заменить отдельно.

Датчики частоты вращения выходного вала (OSS), входного вала (ISS), вала турбинного колеса (TSS)

Место установки: в некоторых коробках передач (автоматическая коробка передач, автоматизированная механическая коробка передач или бесступенчатая автоматическая коробка передач (вариатор)) место установки датчиков может отличаться. Датчики устанавливаются снаружи на картере коробки передач или внутри коробки у соответствующего вала.

Физический принцип действия: индуктивный или эффект Холла. Назначение/принцип действия: улавливают вращения валов благодаря расположению вблизи соответствующего зубчатого колеса или зубчатого венца (задающего ротора) вала.

В зависимости от принципа работы генерирует сигнал переменного напряжения или сигнал прямоугольной форм. Пропорционально частоте вращения изменяется напряжение и частота сигнала (индуктивный датчик) или изменяется частота сигнала (датчик Холла).

ПРИМЕЧАНИЕ: TCM (модуль управления коробкой передач) автоматической коробки передач нельзя диагностировать с помощью мультиметра. В противном случае TCM будет выведен из строя.

На графике OSS, TSS (частота вращения вала турбины) и частота вращения двигателя в регистраторе данных.

На графике ниже отображение сигнала индуктивного TSS в осциллографе на холостом ходу.

На графике ниже отображение сигнала индуктивного TSS в осциллографе при частоте вращения примерно 2500 об/мин.

Вид сигнала зависит от установленного датчика, а также от его зубчатого колеса/зубчатого венца (задающего ротора).

В некоторых коробках передач OSS также называется VSS. В некоторых коробках передач сигналы частоты вращения валов КП используются также для самодиагностики.

Датчик рысканья

Место установки по центру на днище автомобиля или на передней стенке кузова рядом с рулевой колонкой (автомобили с левосторонним рулевым управлением).

Физический принцип действия: пьезо или емкостной. Датчик рыскания измеряет скорость поворота автомобиля вокруг вертикальной оси.

Датчик поперечного ускорения определяет ускорение автомобиля в поперечном направлении. Датчик наклона измеряет усилие, возникающее в наклонном положении и действующее аналогично силе ускорения. Интегрированный в сенсор блок обработки анализирует поступающие сигналы и генерирует соответствующий цифровой сигнал.

Напряжение питания примерно 12 В. Тип сигнала: цифровой протокол CAN, 5 В. Частота 500 Kбит/с. С помощью регистратора данных можно провести только общую проверку работы. Оценка сигналов с помощью сканера невозможна.

В некоторых системах датчики рыскания после замены необходимо «обучить» или откалибровать с помощью сканера. При этом следует соблюдать инструкции актуальной литературы для станций технического обслуживания.

Датчик разрушения стекла

Место установки в заднем боковом стекле или в нагревательном элементе заднего стекла. Физический принцип действия: сопротивление (резистор).

Датчик разрушения стекла устанавливается в универсалах или минивэнах/микроавтобусах с противоугонной сигнализацией. Он представляет собой так называемую петлю сопротивления (электрический проводник).

В боковых стеклах петля сопротивления встраивается отдельно. В заднем стекле ее роль выполняет нагревательный элемент заднего стекла, включенный в цепь противоугонной сигнализации. При разрыве петли сопротивление в цепи возрастает.

Напряжение питания примерно 12 В. Тип сигнала: ВКЛ/ВЫКЛ. Значение меньше 0,5 Ом, петля не разорвана. Сопротивление > 10 кОм, петля разорвана. При неисправности код DTC не регистрируется.

Датчик охраны салона

Место установки в зависимости от автомобиля: на средних стойках; в плафоне освещения салона; в обивке потолка; по центру автомобиля на панели пола (микроволновый датчик).

Физический принцип действия: ультразвуковой или микроволновый. Распознает движение в салоне автомобиля и выдает сигнал тревоги. Напряжение питания примерно 12 В. Тип сигнала: сигнал тревоги, милливольт. В некоторых системах возможно считывание кода неисправности DTC.

Датчики охраны салона можно проверить, включив противоугонную систему. Проверяющий должен находиться в автомобиле. После фазы активации, длящейся примерно 30 секунд, введите руку в область излучения соответствующего датчика. В результате должна сработать сигнализация.

Проверку можно также выполнить при открытом окне. Окно следует открыть лишь немного так, чтобы образовалась небольшая щель. Через нее в область излучения датчика можно ввести какой-либо предмет.

Микроволновый датчик оснащен светодиодом. Для проверки включить режим максимальной защиты противоугонной системы. В конце процедуры должен один раз загореться светодиод.

В зависимости от страны существует возможность отключения сенсоров охраны салона. Необходимые указания содержатся в соответствующем руководстве по эксплуатации. Информация о срабатывании сигнализации и причина срабатывания сохраняются в соответствующем модуле, эту информацию можно считать с помощью диагностического прибора.

Датчик давления хладагента

Место установки со стороны высокого давления A/C (кондиционирование воздуха). Физический принцип действия: упругая мембрана с тензорезисторами. Регистрирует давление в контуре высокого давления системы кондиционирования.

В зависимости от давления хладагента изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение 0,5 – 4,5 В. Сопротивление зависит от давления.

При выходе из строя в PCM заносится код ошибки. Достоверность показаний, при неисправности измерительного элемента, модулем PCM не контролируется.

Сенсоры давления хладагента устанавливаются на автомобилях новых моделей вместо двойных датчиков давления (выключателей). За счет линейной характеристики возможно более точное управление вентилятором.

Датчик детонации (KS)

Место установки на блоке цилиндров под головкой блока цилиндров. Физический принцип действия: пьезодатчик.

KS (датчик детонации) регистрирует возникающие в цилиндре колебания и генерирует соответствующий этим механическим колебаниям электрический сигнал.

Чем сильнее колебания, тем выше частота и величина переменного напряжения сигнала. Тип сигнала: переменное напряжение, милливольт. Сопротивление примерно 4,8 МОм. Частота 4 кГц – 18 кГц. При неисправности заносится код ошибки.

Проверить можно с помощью коробки-разветвителя или кабель-адаптера для подключения мультиметра к зонду KS. Настроить мультиметр на минимальный диапазон измерения переменного напряжения (мВ). Напряжение должно регистрироваться мультиметром при легком ударе по блоку цилиндров.

В зависимости от модификации на 4-х цилиндровых двигателях могут устанавливать один или два сенсора детонации. Если установлен один KS, то он находится в середине блока цилиндров между вторым и третьим цилиндром.

Если установлено 2 датчика детонации, то они находятся между первым и вторым, а также между третьим и четвертым цилиндром. Шестицилиндровые двигатели с V-образным расположением цилиндров всегда имеют два сенсора детонации, по одному в центре каждого ряда цилиндров.

Датчик усилия

Место установки в приводе стояночного тормоза (электронный стояночный тормоз). Физический принцип действия: эффект Холла. Назначение: измеряет усилие, действующее на трос стояночного тормоза (электронный стояночный тормоз).

Датчик усилия нельзя проверить, поскольку он полностью интегрирован в привод стояночного тормоза. При неисправности необходимо полностью заменить привод стояночного тормоза. Возможно считывание кода DTC диагностическим прибором.

Датчик давления топлива

Место установки в топливной рейке (рампе) системы впрыска. Устройство датчика давления: упругая мембрана с тензорезисторами. Назначение/принцип действия: измеряет давление топлива в топливной рейке (рампе).

В зависимости от давления топлива изменяется сопротивление, а следовательно, падение напряжения на зонде. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,8 В. Сопротивление в зависимости от давления.

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры давления отображаются в регистраторе данных.

Номинальные значения напряжения для системы Common-Rail компании Denso

Давление топлива, бар Напряжение, В
0 примерно 1,0
200 примерно 1,32
1000 примерно 2,6
1600 примерно 3,56
2000 примерно 4,2

В условиях сервиса датчик давления топлива нельзя заменить отдельно. При неисправности сенсора давления топлива необходимо поменять топливную рейку (рампу) в сборе.

Датчик уровня топлива

Место установки в топливном баке, интегрирован в FPDM (модуль управления топливным насосом). Физический принцип действия: потенциометр со скользящим контактом. Назначение: определяет уровень топлива в топливном баке.

При изменении уровня топлива меняется положение скользящего контакта на дорожке потенциометра, а следовательно, падение напряжения на измерителе. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение.

В датчиках уровня топлива старого образца может иметься 2 дорожки потенциометров, сопротивление которых изменяется обратно пропорционально. В соответствии с этим при увеличении сопротивления одного из потенциометров сопротивление другого потенциометра уменьшается и наоборот.

Положение датчика
уровня топлива
Сопротивление, Ом
Топливный бак пуст > 150
Топливный бак заполнен на 50% примерно 50 – 80
Топливный бак полон менее 20

Код ошибки не фиксируется. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных. Отображаемое на панели приборов значение можно проверить путем самотестирования панели приборов. Указания по проведению самодиагностики содержатся в соответствующей литературе для станций технического обслуживания.

Для точной проверки необходимо снять датчик уровня топлива и проверить сопротивление потенциометра со скользящим контактом. При перемещении скользящего контакта по дорожке потенциометра сопротивление должно изменяться непрерывно и плавно.

Датчик температуры топлива

Место установки в обратной топливной магистрали или на ТНВД. Физический принцип действия NTC-резистор. Измеряет температуру топлива в обратной магистрали.

В зависимости от температуры топлива изменяется сопротивление, а следовательно, падение напряжения на сенсоре. Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,9 В. Сопротивление в зависимости от температуры.

Номинальные значения сопротивления для топливной системы Common-Rail компании Denso

Температура, °C Сопротивление, кОм
–30 примерно 25,4
–20 примерно 15,04
–10 примерно 9,16
0 примерно 5,74
10 примерно 3,70
20 примерно 2,45
30 примерно 1,66
40 примерно 1,15
50 примерно 0,811
60 примерно 0,584
70 примерно 0,428
80 примерно 0,318
90 примерно 0,240
100 примерно 0,184
110 примерно 0,142
120 примерно 0,111

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Значения температуры отображаются в регистраторе данных.

Датчик положения педали сцепления (автомобили с системой помощи при трогании на склоне)

Место установки на главном цилиндре сцепления. Физический принцип действия: индуктивный датчик. Служит для определения момента замыкания сцепления (определение момента трогания с места для систем с электронным стояночным тормозом).

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных. Возможна проверка осциллографом.

Датчик можно заменить отдельно. Однако установленном на автомобиль главном цилиндре сцепления доступ к датчику ограничен. Поэтому снятия и монтаж датчика проводится специальным инструментом.

Датчик положения коленчатого вала (CKP)

Место установки рядом с маховиком или шкивом (гасителем крутильных колебаний). Физический принцип действия: индуктивный или эффект Холла.

CKP улавливает положение зубчатого венца (индуктивный датчик) или специального диска с точно определенным количеством пар магнитных полюсов (север/юг) (датчик Холла).

Между некоторыми зубьями или парами магнитных полюсов предусмотрены промежутки. Сигнал CKP зависит от скорости вращения.

При индуктивном CKP частота сигнала, а также амплитуда увеличиваются пропорционально росту частоты вращения коленчатого вала.

В датчиках Холла с увеличением частоты вращения коленчатого вала двигателя растет только частота сигнала.

Опорное напряжение примерно 5 В. Тип сигнала: синусоидальный сигнал (индуктивный сенсор); сигнал прямоугольной формы (эффект Холла).

При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM (индуктивный). Возможна проверка осциллографом. Параметры сигнала не отображаются в регистраторе данных. При отсутствии сигнала CKP при запуске двигателя, величина оборотов в регистраторе данных равна 0.

Для систем с индуктивным датчиком важную роль играет скорость вращения стартера. Чтобы получить надежный сигнал для дальнейшей обработки в PCM, при запуске должна достигаться определенная частота вращения коленчатого вала (при этом напряжение сигнала достигает достаточной величины). Кроме того, величина минимального напряжения сигнала CKP, принимаемого для запуска двигателя модулем PCM, задается в программе модуля.

Корректная настройка воздушного зазора между сенсором и задающим ротором, а также положение сенсора, имеет большое значение. Небольшие отклонения могут привести к тому, что двигатель не запустится.

Загрязнение (например, масло или коррозия) между задающим ротором и сенсором могут привести к тому, что двигатель не запустится или будет работать неравномерно. Если мотор запускается и работает без перебоев, значит сигнал в норме.

Датчик температуры охлаждающей жидкости двигателя (ECT) и температуры головки блока (CHT)

Место установки датчика ECT в малом контуре охлаждающей жидкости двигателя автомобиля. Датчик CHT установлен на головке блока цилиндров.

Физический принцип действия: NTC-резистор. ECT/CHT измеряет температуру охлаждающей жидкости или соответственно температуру головки блока цилиндров.

В зависимости от температуры охлаждающей жидкости или температуры головки блока изменяется сопротивление, а следовательно, падение напряжения на зонде.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

Номинальные параметры датчика температуры охлаждающей жидкости ECT-/CHT в системах Visteon

Температура, °C Сопротивление, кОм Напряжение, В
–40 860 – 900 4,51 – 4,54
–30 501 – 645 4,46 – 4,49
–20 253 – 289 4,31 – 4,35
–10 170 – 196 4,17 – 4,23
0 89,0 – 102 3,82 – 3,92
10 62,0 – 70,0 3,5 – 3,7
20 35,0 – 40,0 3,0 – 3,2
30 25,0 – 28,0 2,6 – 2,8
40 15,0 – 17,0 2,0 – 2,2
50 11,0 – 13,0 1,7 – 1,9
60 7,1 – 8,0 1,2 – 1,4
70 5,0 – 6,2 0,9 – 1,2
80 3,0 – 4,5 0,6 – 0,9
90 2,4 – 3,5 0,5 – 0,7
100 1,9 – 2,5 0,4 – 0,5
110 1,5 – 1,7 0,3 – 0,4
120 1,0 – 1,3 0,2 – 0,3

ПРИМЕЧАНИЕ: Для датчиков CHT при измерениях с помощью регистратора данных после «скачка напряжения» (подключения второго сопротивления) выдаются другие значения.

Сигнал CHT недостаточно точен при высоких температурах, т. е. он не обеспечивает точной работы во всем диапазоне измерений.

Для компенсации этого эффекта характеристическая кривая температуры сдвигается путем подключения второго сопротивления непосредственно в модуле PCM. Температура подключения и отключения второго сопротивления определяется стратегией управления двигателем (программой).

Температуры включения/отключения второго сопротивления могут быть смещены друг относительно друга (гистерезис). Это делается для того, чтобы предотвратить постоянное включение/отключение второго сопротивления при длительной работе двигателя с соответствующей моменту переключения температурой ОЖ. Пример:

  1. Системы Visteon (дизельный двигатель): температура включения: 78 °C, температура отключения: 62 °C;
  2. Системы Siemens (дизельный двигатель): температура включения: 85 °C, температура отключения: 80 °C.

Датчик угла поворота рулевого колеса

Место установки на рулевой колонке или непосредственно за рулевым колесом. Физический принцип действия: оптоэлектронный или магниторезистивный.

Назначение: измеряет угол поворота рулевого колеса. Встроенный блок обработки результатов генерирует цифровой сигнал, соответствующий повороту рулевого колеса.

При регистрации только относительного вращения сенсор измеряет только изменение угла поворота рулевого колеса. Прямое положение рулевого колеса в датчике не задано.

При регистрации абсолютного вращения сенсор генерирует сигнал, соответствующий каждому положению рулевого колеса. В датчике задано прямое положение рулевого колеса.

Напряжение питания примерно 12 В. Тип сигнала: цифровой, протокол CAN, 5 В. Частота 500 Kбит/с. При неисправности заносится код ошибки DTC. Проверяется направленной диагностикой (при наличии).

Показания параметров измерения в регистраторе данных могут отсутствовать из-за программного обеспечения модуля контроля. Датчики угла поворота рулевого колеса непрерывно проверяются модулем ABS/системы поддержания курсовой устойчивости.

При отображении сигнала в регистраторе данных необходимо помнить, что, при определенных условиях, область измерения может быть изображена не для всего диапазона поворота рулевого колеса (от упора до упора).

Для проверки достаточно повернуть рулевое колесо в каждом направлении, т. к. возможная ошибка будет повторяться.

С помощью светового затвора оптоэлектронный сенсор угла поворота рулевого колеса бесконтактно улавливает поворот жестко связанного с валом рулевой колонки диска с отверстиями.

Магниторезистивные сенсоры угла поворота рулевого колеса включают в себя два постоянных магнита, каждый из которых поворачивается на шестерне, находящейся в зацеплении с шестерней рулевой колонки.

Передаточное отношение у этих двух зубчатых передач разное (разное число зубьев у шестерен магнитов), поэтому в каждом положении рулевого колеса магниты по разному ориентированы друг относительно друга.

В некоторых системах сенсор угла поворота рулевого колеса после замены необходимо «обучить» или откалибровать с помощью диагностического прибора. При этом следует соблюдать инструкции актуальной литературы для станций технического обслуживания. При настройке можно одновременно выполнить проверку работы сенсора.

Датчик освещенности

Датчик освещенности для автоматического контроля света объединен вместе с датчиком дождя автоматического стеклоочистителя в один блок, расположенный за ветровым стеклом в зоне работы стеклоочистителя, неподалеку от внутреннего зеркала в автомобиле.

Физический принцип действия: фотогальваника. Состоит из трех элементов: датчика освещенности вблизи, освещенности на удалении и рассеивателя.

Сенсор освещенности вблизи определяет освещенность в непосредственной близости от ветрового стекла. От сенсора освещенности на удалении поступает информация об уровне освещенности перед автомобилем.

Если оба сенсора освещенности (вблизи и на удалении) одновременно регистрируют резкое снижение освещенности, то с помощью алгоритма расчета в модуле автоматического управления светом или GEM (модуль управления электрооборудованием) генерируется цифровой частотно модулированный сигнал на включение внешних световых приборов.

Напряжение питания примерно 12 В. Тип сигнала: цифровой код. При неисправности заносится код ошибки DTC. При не соответствующем сигнале при включении функции автоматического управления светом может постоянно гореть ближний свет. Сенсор способен отличить дневной свет от искусственного освещения. Датчик освещенности не поддается диагностике.

Датчик массового расхода (MAF)

Место установки во впускном тракте, за воздушным фильтром. Физический принцип действия: термоанемометрический расходомер воздуха с проволочным элементом или термоанемометрический горячепленочный расходомер воздуха. MAF измеряет массу поступающего в автомобильный двигатель воздуха.

Принцип действия расходомера воздуха с проволочным элементом MAF: поток воздуха проходит через трубку Вентури, находящуюся в корпусе MAF.

Возникающее в трубке разрежение вызывает подсос определенного количества воздуха через обходной канал.

В обходном канале находится проволочный нагревательный элемент и резистор температурной компенсации. Датчик температуры воздуха измеряет температуру проходящего воздуха, который охлаждает проволочный нагревательный элемент.

Блок управления подает на проволоку определенный ток для поддержания постоянной разницы температур проволоки и потока воздуха. При этом способе измерения учитывается плотность воздуха, т. к. от неё зависит величина теплопередачи от проволоки к охлаждающему её воздуху.

Ток нагрева проволочного элемента является, таким образом, мерой массового расхода воздуха. На основе этого тока в блоке обработки датчика генерируется пропорциональный массовому расходу воздуха сигнал напряжения, который передается на PCM. Здесь существует следующая закономерность:

  • малый массовый расход воздуха – низкое напряжение (примерно 0,5 В);
  • большой массовый расход воздуха – высокое напряжение (примерно 5 В).

Принцип действия пленочного расходомера воздуха MAF: в зависимости от стратегии управления двигателем пленочный расходомер воздуха MAF может быть аналоговым или цифровым.

Пленочный расходомер воздуха MAF способен распознавать направление потока воздуха. Для этого на поверхности кристалла выполнены два элемента измерения температуры, каждый из которых нагревается от электрического нагревательного элемента и охлаждается потоком воздуха.

Блок управления подает на нагревательный элемент такой ток, чтобы поддерживать постоянную разницу между температурами нагревательного элемента и потока воздуха.

На основании сигналов обоих элементов измерения температуры можно определить как массовый расход воздуха, так и направление потока. Поэтому даже при сильных пульсациях потока воздуха можно точно рассчитать массовый расход воздуха.

Направление потока определяется при сравнении значений температур измерительных элементов (первый по отношению к набегающему потоку элемент охлаждается сильнее, т. е. его температура меньше).

Напряжение питания (некоторые варианты) примерно 12 В или опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,75 В или частота 700– 10000 Гц.

Вывод сигнала MAF в регистраторе данных зависит от варианта автомобиля. Данные могут выводиться в вольтах (В) и в граммах за секунду (г/с). Выданное расходомером MAF значение зависит от модификации системы впуска, а также от рабочего объема двигателя машины.

Значение сигнала аналогового MAF при максимальном ускорении и полной нагрузке на 3 передаче должно превышать 4 В.

Цифровой MAF: частота изменяется с ростом частоты вращения и расхода воздуха.. Кроме того, массовый расход воздуха и сигнал сенсора зависит от конструкции впускного тракта.

Значение сигнала цифрового MAF при максимальном ускорении на 3-ей передаче примерно 120 – 150 г/сек. В некоторых автомобилях значения расхода воздуха отображаются в кг/час.

В новые расходомеры MAF встроен датчик IAT. Он предназначен, в основном, для коррекции сигнала MAF. В результате обеспечивается более точное измерение массового расхода воздуха. Физический принцип работы, а также способы проверки те же, что и у отдельного датчика IAT.

В некоторых автомобилях после замены расходомера MAF требуется выполнить сброс параметров в модуле управления с помощью диагностического прибора. Необходимые указания содержатся в актуальной литературе для станций технического обслуживания.

Датчик температуры воздуха в салоне и подаваемого воздуха

Место установки на панели приборов или на дефлекторах вентиляции салона. Физический принцип действия: NTC-резистор. Измеряет температуру воздуха на дефлекторах и в салоне автомобиля.

В зависимости от температуры воздуха изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки (DTC).

Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры температуры отображаются в регистраторе данных.

В зависимости от модели и комплектации, в автомобиле может быть установлено несколько датчиков в дефлекторах пространства для ног и ветрового стекла, а также в центральных дефлекторах (на панели приборов).

На графике показана зависимость сопротивления сенсора от температуры подаваемого воздуха, действительная для всех современных автомобилей.

В регистраторе данных их сигналы можно отобразить по отдельности. При этом следует помнить, что предустановленная область измерения настроена на оптимальные для диагностики значения (0 – 50 °C).

На диаграмме показаны значения сенсоров температуры системы кондиционирования воздуха при изменении температуры (в регистраторе данных).

Отображаемые значения должны соответствующим образом изменяться при изменении температуры или положения воздушных заслонок. Полученные при этом данные можно параллельно сравнить с показаниями обычного термометра. Для этого нужно поместить термометр в соответствующий поток воздуха.

В конструкцию датчиков температуры в салоне часто входит дополнительный вентилятор, который всасывает воздух из салона, чтобы получить оптимальный результат измерения.

Его частоту вращения также можно отобразить в регистраторе данных (значения в герцах (Гц)). При выходе этого вентилятора из строя индицируемое в регистраторе данных значение температуры этого датчика может отличаться от действительной температуры в салоне. При неисправности фиксируется код ошибки.

Датчик наклона

Место установки по одному датчику на передней и задней оси (автомобили с автоматическим корректором фар). Физический принцип действия: эффект Холла или индуктивный. Датчик измеряет высоту автомобиля относительно некоторого заданного уровня.

В соответствии с наклоном автомобиля и возникающим в связи с этим изменением положения рычага датчика встроенный блок обработки результатов генерирует напряжение.

Напряжение питания 4,8 – 5,2 В. Тип сигнала: постоянное напряжение: 0,5 – 4,5 В. При неисправности заносится код ошибки. Проверять направленной диагностикой (при наличии) и цифровым мультиметром DMM. Параметры сигнала отображаются в регистраторе данных.

Для некоторых систем данные могут быть представлены по-разному: вольты, градусы или проценты. Ниже показан сигнал при многократном изменении высоты автомобиля (быстрое покачивание) в регистраторе данных.

Для точной проверки необходимо отсоединить от автомобиля рычаг датчика. Это позволит отобразить сигнал в регистраторе данных при прохождении всего диапазона перемещения рычага.

При этом следует помнить, что на автомобиле с вывешенными колесами значения сигнала могут находиться вне области измерения, и проверка возможна только в ограниченных пределах.

Показания переднего и заднего сенсора служат для определения наклона автомобиля и, соответственно, для коррекции наклона фар. Изменение сигнала не обязательно сразу же приводит к коррекции наклона фар, поскольку системы работают с разными временами реакции или алгоритмами.

При изменении дорожного просвета автомобиля (например, при установки комплектов для его уменьшения) может потребоваться соответствующая адаптация точек крепления датчиков или рычагов.

При работах с сенсорами наклона необходимо обратить особое внимание на их правильное положение, т. к. при неправильной установке не гарантируется надлежащая работа.

В некоторых системах сенсор наклона после замены необходимо откалибровать или «обучить». При этом необходимо соблюдать рекомендации последнего издания руководства по обслуживанию автомобиля. Датчики наклона называются еще датчиками корректора фар или уровня/положения автомобиля.

Датчик положения распределительного вала (CMP)

Место установки в головке блока цилиндров, в зависимости от положения задающего ротора. Существуют следующие типы задающих роторов: задающий ротор с выступом на распределительном вале и задающий ротор на зубчатом шкиве распределительного вала.

Физический принцип действия: эффект Холла или индуктивный. Служит для распознавания положения ВМТ первого цилиндра для определения последовательности впрыска.

CMP улавливает перемещение одного или нескольких выступов на распределительном вале или изменение положения задающего ротора на зубчатом шкиве распределительного вала. Количество сигналов и расстояния между сигналами зависит от типа системы впрыска и от соответствующей стратегии управления двигателем.

Опорное напряжение: индуктивный зонд примерно 5 В / 12 В; датчик Холла 12 В. Тип сигнала: синусоидальный (индуктивный); прямоугольной формы (эффект Холла). Сопротивление индуктивного сенсора 200 – 900 кОм. Частота сигнала зависит от скорости вращения.

Диагностика DTC не для всех систем – зависит от программного обеспечения. Проверяется направленной диагностикой (при наличии), цифровым мультиметром DMM (индуктивный зонд) и осциллографом. На рисунке ниже индуктивный сигнал системы последовательного впрыска во впускной коллектор на холостом ходу на осциллографе.

Частота и амплитуда сигнала индуктивного CMP растет пропорционально увеличению частоты вращения распределительного вала. Таким образом, надежный сигнал можно получить только начиная с определенной частоты вращения распределительного вала (частоты вращения коленчатого вала двигателя). Этот тип CMP используется преимущественно в системах последовательного впрыска бензина во впускной коллектор.

Последовательный впрыск во впускной коллектор производится, когда частота вращения коленчатого вала двигателя достигает 400 — 600 об/мин. Для распознавания положения ВМТ первого цилиндра в этих системах используется контрольный выступ, проходящий возле датчика CMP за один рабочий цикл (два оборота коленчатого вала).

Напряжение прямоугольного сигнала (эффект Холла) генерируется не независимо от частоты вращения. При увеличении/уменьшении частоты вращения коленчатого вала двигателя изменяется только частота сигнала. На рисунке ниже сигнал Холла в системе прямого (непосредственного) впрыска бензина на холостом ходу на осциллографе.

CMP на основе эффекта Холла в основном используются в двигателях с прямым (непосредственным) впрыском топлива. Использование этого типа сенсоров обусловлено возможностью однозначного и быстрого определения последовательности впрыска при запуске с относительно низкой частотой вращения коленчатого вала (в дизельных двигателях Common-Rail 250 – 300 об/мин).

В зависимости от стратегии управления двигателем для распознавания цилиндра может предусматриваться один или несколько выступов на распределительном вале/задающем роторе. Последовательность сигналов зависит от размеров выступа (выступов) (в зависимости от сигнала CMP), а также, от стратегии управления двигателем.

Датчик температуры и уровня масла

Место установки внутри блока цилиндров, рядом с масло измерительным щупом. Физический принцип действия зонда уровня масла: использование нагревательной проволоки, NTC-резистор. Служит для определения уровня и состояния масла. Опорное напряжение 5 В.

ПРИМЕЧАНИЕ: PCM кратковременно подает управляющее напряжение на нагревательную проволоку только при соблюдении определенных условий. Поэтому измерить силу тока и напряжение невозможно.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Номинальные параметры сенсора температуры и нагревательной проволоки указаны в таблицах.

Номинальные параметры для нагревательной проволоки

Температура, °C Сопротивление, Ом
–30 примерно 7,9
20 примерно 9,8
160 примерно 14,8

Номинальные параметры датчика температуры масла

Температура, °C Сопротивление, Ом
–40 80429 – 106834
–30 41895 – 54306
–20 22717 – 28796
0 7442 – 9078
20 2772 – 3269
40 1151 – 1320
60 526 – 588
80 261 – 285
100 139 – 149
120 78 – 83
140 45 – 50
160 27 – 32

Датчик положения исполнительного механизма (устройства) переключения передач

Место установки на корпусе исполнительного механизма переключения передач. Физический принцип действия: индуктивный (постоянный магнит с тремя катушками). Сенсор положения исполнительного механизма переключения передач регистрирует движение цилиндров включения и выбора передачи.

На первичную обмотку подается напряжение. В результате перемещения магнита на вторичной обмотке индуцируется напряжение соответствующей величины. Опорное напряжение примерно 5 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

В регистраторе данных можно отобразить сигнал положения исполнительного механизма переключения передач. При этом индицируемая передача должна соответствовать передаче, включенной в КП.

Датчик положения исполнительного механизма переключения передач также называют датчиком положения цилиндров выбора и включения передач.

Датчик частоты вращения колеса

Место установки на корпусах ступичных подшипников передних и задних колес. Физический принцип действия: индуктивный (пассивный) или магниторезистивный (активный).

Назначение/принцип действия: измеряют частоту вращения отдельных колес. В зависимости от принципа работы генерируется сигнал переменного напряжения (индуктивный) или сигнал PWM с постоянной частотой (магниторезистивный).

При индуктивном принципе: частота, а также амплитуда сигнала увеличиваются пропорционально росту частоты вращения колеса..При магниторезистивном: пропорционально росту частоты вращения колеса увеличивается только скважность сигнала PWM.

Напряжение питания 11,3 – 11,5 В. Сопротивление 0,9 – 1,4 кОм (индуктивный датчик). При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии),цифровым мультиметром DMM (индуктивный сенсор) и осциллографом. Сигнал отображается в регистраторе данных.

В регистраторе данных рекомендуется отображать сигналы в виде гистограммы. В этом случае при прямолинейном движении у столбиков сигналов всех четырех сенсоров должна быть одинаковая длина.

Если один сигнал (или несколько сигналов) заметно отличается, то, возможно, в цепи этого сенсора возникла ошибка.

С конца 90-х годов широко применяются так называемые активные (магниторезистивные) сенсоры частоты вращения колеса. В отличие от индуктивных сенсоров они способны регистрировать частоту вращения, начиная с состояния покоя, что необходимо, например, для антипробуксовочных систем в момент начала движения.

Активный сенсор колеса состоит из двух магниторезистивных сопротивлений, которые соединены с двумя постоянными сопротивлениями по мостовой схеме (измерительный мост Витстоуна).

Благодаря такой схеме удается компенсировать влияние температуры и процессов старения на сигнал вращения колеса. Измерительный мост находится в непосредственной близости от задающего ротора, состоящего из постоянных магнитов с чередующейся полярностью.

Задающий ротор жестко соединен со ступицей или внутренним кольцом ступичного подшипника и вращается с частотой вращения колеса. В сенсор встроен блок обработки результатов измерений, который преобразует полученный в результате измерения синусоидальный сигнал в сигнал PWM с постоянной частотой.

Для работы необходимо подать напряжение питания, для этого на сенсоре есть два электрических контакта. Сигнал генерируется из тока, проходящего через сенсор. Ток большой силы (примерно 14 мА) интерпретируется модулем ABS/системы поддержания курсовой устойчивости как сигнал высокого уровня, ток малой силы (примерно 7 мА) как сигнал низкого уровня.

Чтобы модуль ABS/системы поддержания курсовой устойчивости мог правильно обработать сигнал пассивного зонда частоты вращения колеса (индуктивный), необходима достаточная амплитуда сигнала. Это означает, что пригодный к использованию сигнал может быть сгенерирован только начиная с некоторой минимальной скорости (примерно 5 — 7 км/ч, в зависимости от системы).

Как активный, так и пассивный сенсор частоты вращения колеса не изнашивается. В связи с использованием постоянных магнитов на сенсорах и задающих роторах могут оседать металлические частицы, например, частицы, образующиеся в процессе износа тормозных колодок. Эти частицы могут повлиять на работу. Поэтому при каждом вызванном сбое необходимо проверить чистоту сенсоров и их задающих роторов и, при необходимости, очистить их.

Датчик дождя в автомобиле

Место установки: интегрирован вместе с датчиком освещенности в один блок, расположенный за ветровым стеклом в области действия стеклоочистителей, недалеко от внутреннего зеркала.

Физический принцип действия: передача и прием инфракрасного излучения. Назначение/принцип действия: измеряет количество осадков, попавших на ветровое стекло. Если регистрируется определенное количество осадков на ветровом стекле, то с помощью алгоритма расчета в модуле автоматического управления наружным освещением или GEM генерируется цифровой частотно модулированный сигнал на включение стеклоочистителей. Напряжение питания примерно 12 В. Тип сигнала: цифровой код. При неисправности заносится код ошибки.

Диоды-излучатели (светодиоды) выдают инфракрасное излучение, проходящее через ветровое стекло и отражающееся его внешней стороной. Диоды-приемники (фотодиоды) регистрируют интенсивность отраженного излучения.

Угол, под которым направлено излучение, выбран так, что при отсутствии дождя внешней стороной стекла (граница стекла и воздуха) отражается 100% излучения. При сухой поверхности стекла инфракрасное излучение доходит до диода-приемника практически без уменьшения интенсивности (полное отражение).

При мокром стекле инфракрасное излучение поглощается каплями воды и доходит до диода-приемника только частично (частичное отражение). Зарегистрированная интенсивность излучения зависит от интенсивности дождя, т. к. дождевые капли частично препятствуют отражению от поверхности стекла. Чем более влажным становится стекло, тем ниже процент отражения.

Доля отраженного света является управляющей величиной для интервального таймера стеклоочистителей. С ее помощью сенсор дождя регулирует в зависимости от «измеренного» количества осадков скорость стеклоочистителя.

Датчик дождя не поддается диагностике.

Если во время работы стеклоочистителей регистрируется неисправность, стеклоочистители продолжают работать с последней установленной скоростью.

В некоторых автомобилях при выполнении перечисленных ниже условий производится автоматическая калибровка сенсора:

  1. В старых моделях после включения автоматического режима стеклоочистителя происходит инициализация, при которой стеклоочистители один раз приводятся в действие. Таким образом определяется фактическое состояние наружной поверхности стекла (например, потертости стекла от мелких камней и песка) или возможное стойкое (не удаляемое щетками) загрязнение рабочей зоны, которые учитываются при дальнейшей работе.
  2. В новых моделях автоматическая калибровка выполняется, только если выключатель стеклоочистителя перед включением зажигания находился не в положении автоматического режима.

В зависимости от автомобиля и оснащения можно настроить чувствительность сенсора дождя. Соответствующие указания содержатся в руководстве по эксплуатации.

В автомобилях с отражающим инфракрасное излучение ветровым стеклом «Solar Reflect» (атермальное стекло) установлен модуль сенсора освещенности/дождя, учитывающий покрытие стекла. Такой модуль нельзя заменять модулем для автомобилей без отражающего инфракрасное излучение ветрового стекла, т. к. при этом не будет обеспечена корректная работа сенсора дождя.

Датчик абсолютного давления во впускном коллекторе (MAP)

Место установки во впускном тракте. Физический принцип действия: упругая мембрана с тензорезисторами или пьезодатчик.

MAP измеряет текущее абсолютное давление во впускном коллекторе. В зависимости от абсолютного давления во впускном коллекторе изменяется сопротивление, а следовательно, падение напряжения на измерительном элементе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0 – 4,8 В. При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии),цифровым мультиметром DMM и осциллографом. Сигнал отображается в регистраторе данных.

Для некоторых модификаций автомобилей регистратор данных вместо (или наряду с) индикацией в вольтах показывает текущее давление во впускном коллекторе в барах. В этом случае простую проверку MAP можно выполнить с помощью ручного насоса:

  1. Подключите ручной насос к датчику MAP (при необходимости, снимите для этого MAP).
  2. В зависимости от типа двигателя (бензиновый или дизельный) в несколько этапов создайте либо разрежение (для бензинового двигателя), либо избыточное давление (для дизельного двигателя).
  3. Значения на указателе ручного насоса должны совпадать со значениями регистратора данных.

В автомобилях с системами EEC IV и частично с EEC V измеренное MAP давление выдается в виде частотно модулированного сигнала (Гц).

Трещины на корпусе или внутренние повреждения могут привести к тому, что при правильной частоте сигнал будет иметь недостаточную величину амплитуды. С помощью осциллографа можно проверить величину амплитуды (заданное значение примерно 5 В). Вместо простых MAP часто используются датчики MAPT. При этом сенсор IAT интегрирован в MAP.

Примечание: Показания изменяются в зависимости от атмосферного давления (обычно составляет от 920 до 1028 бар), поэтому измеренные значения могут несколько отличаться.

Датчик качества окружающего воздуха

Место установки в корпусе отопителя/испарителя на впуске свежего воздуха. Физический принцип действия: принцип работы гальванических элементов.

Сенсор регистрирует вредные вещества в окружающем воздухе, которые попадают в салон через систему вентиляции. Распознавание вредных веществ базируется на измерении сопротивления подогреваемого измерительного элемента из окиси олова.

Рабочий диапазон: напряжение питания примерно 12 В. Тип сигнала: сигнал PWM 5В. Частота 50 Гц ± 2%. При неисправности заносится код ошибки (DTC). Значения отображается в регистраторе данных. Возможна проверка осциллографом.

Сигнал зонда качества окружающего воздуха игнорируется в течение первых 80 секунд после включения системы кондиционирования.

Датчик занятости и определения нагрузки на сиденье

Место установки: встроен в сиденье переднего пассажира. Физический принцип действия: изменение сопротивления. Напряжение питания примерно 12 В. Тип сигнала: цифровой ВКЛ/ВЫКЛ. Сенсор определяет, занято ли сиденье переднего пассажира.

Система состоит из встроенного в сиденье сенсорного коврика, в который встроено множество чувствительных элементов. Эти чувствительные элементы имеют собственный модуль управления, расположенный под сиденьем пассажира.

Сенсор занятости и определения нагрузки на сиденье непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса. В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода неисправности поясняет суть неисправности при диагностике и процедуре проверки.

Если сиденье переднего пассажира не занято или на нем находится легкий объект, в модуль управления подушек безопасности передается сигнал «сиденье не занято», что приводит к отключению подушки безопасности переднего пассажира.

При незанятом сиденье и вставленном в замок ремня безопасности (например, при установке детского сиденья) загорается контрольная лампа «отключена подушка безопасности переднего пассажира». Сенсор можно поменять только вместе с элементом из вспененного материала. Необходимые указания содержатся в соответствующей литературе для станций технического обслуживания.

Датчик занятости сиденья

Место установки: встроен в сиденье переднего пассажира. Физический принцип действия: изменение сопротивления. Напряжение питания примерно 12 В, Тип сигнала: цифровой ВКЛ/ВЫКЛ.

Сенсор занятости сиденья состоит из встроенной в подушку сиденья сенсорной ленты и, в зависимости от модификации, отдельного модуля распознавания занятости сиденья, который анализирует сигналы и передает их в модуль управления SRS.

Модуль распознавания занятости сиденья не встраивается в сиденье (находится снаружи). Зонд распознает наличие человека на сиденье переднего пассажира. При превышении определенного давления на сенсор генерируется цифровой сигнал.

Сенсор непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса. Его можно заменить только вместе с элементом из вспененного материала.В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода неисправности поясняет суть неисправности при диагностике и процедуре проверки.

Сенсор занятости сиденья используется на автомобилях, оснащенных сигнальной лампой ремня переднего пассажира. Отключение подушки безопасности переднего пассажира не выполняется.

Датчик положения сиденья

Место установки под сиденьем водителя на внутренней направляющей сиденья. Физический принцип действия: эффект Холла. Напряжение питания примерно 5 В. Тип сигнала: прямоугольный ВКЛ/ВЫКЛ.

Зонд определяет продольное положение сиденья водителя. Когда сиденье находится в переднем положении, металлическая пластина входит в датчик. Это влияет на магнитное поле, в результате генерируется сигнал прямоугольной формы.

Зонд положения сиденья непрерывно проверяется модулем SRS, его нельзя проверить в условиях сервиса.

В зависимости от системы отображается код неисправности вместе с соответствующим описанием. Это описание кода поясняет суть неисправности при диагностике и процедуре проверки.

Датчик интенсивности солнечного излучения

Место установки на передней части панели приборов (в автомобилях с EATC (электронный автоматический климат-контроль) и SATC (Полуавтоматическое управление температурой)).

Физический принцип действия: фотогальванический. Датчик измеряет интенсивность солнечного излучения. Чем большую интенсивность солнечного излучения регистрирует датчик, тем меньше его сопротивление.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение. Сопротивление: светло: 0 — 1 кОм; темно: > 4,5 МОм.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM. Сигнал отображается в регистраторе данных. Рекомендуется отображать сигнал в виде гистограммы.

При проверке необходимо помнить, что даже при прямом солнечном свете может быть отображено меньшее значение, чем ожидалось.

Например, при освещении сильными лампами (не неоновые лампы) может при определенных обстоятельствах быть достигнуто большее значение, чем при солнечном свете.

Если сенсор экранирован от света, то должно быть показано соответствующее максимальное значение (темно). Индикация может быть числовой или процентной.

Датчики положения (перемещения)

Датчики положения, как правило, интегрированы непосредственно в исполнительный механизм (устройство) и напрямую связаны с исполнительным механизмом (устройством).

Физический принцип действия: потенциометр со скользящим контактом или индуктивный. Устанавливаются преимущественно в исполнительных механизмах, положение в которых требуется определить непосредственным измерением, например:

  • положение вакуумного клапана EGR;
  • положение электрического клапана EGR;
  • положение дроссельной заслонки с электронным приводом;
  • положение направляющих лопаток турбокомпрессора (турбокомпрессор с изменяемой геометрией в автомобилях с двигателями, отвечающими нормам токсичности ОГ IV);
  • положение сцепления (автомобили с автоматизированной коробкой передач).

Сенсоры положения выдают соответствующему модулю управления ответный сигнал (сигнал обратной связи) о текущем положении исполнительного механизма. Таким образом образуется замкнутая цепь системы автоматического регулирования.

Возможности проверки зависят от физического принципа работы, а также от их использования в системе. По этой причине об этих датчиках рассказывается в описании соответствующего исполнительного устройства в технической информации.

Датчик положения воздушной заслонки (дизельные двигатели)

Место установки во впускном тракте на корпусе воздушной заслонки. Физический принцип действия: потенциометр со скользящим контактом или индуктивный. Опорное напряжение примерно 5 В.

В отличие от большинства бензиновых двигателей (в которых дроссельная заслонка постоянно используется для регулировки мощности) воздушная заслонка дизельных двигателей используется только при определенных условиях.

При закрывании воздушной заслонки скользящий контакт перемещается по дорожке потенциометра. Сопротивление уменьшается при закрывании воздушной заслонки пропорционально изменению ее положения.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии), цифровым мультиметром DMM и осциллографом. Значения напряжения отображаются в регистраторе данных.

Проверку можно выполнить с помощью ручного вакуумного насоса и регистратора данных. Для проверки подключите ручной вакуумный насос к штуцеру вакуумного привода воздушной заслонки.

С помощью осциллографа можно проверить непрерывность и равномерность характеристики сигнала датчика положения воздушной заслонки. Для этого с помощью ручного вакуумного насоса следует плавно перевести воздушную заслонку из положения «полностью закрыта» в положение «полностью открыта». При этом напряжение на осциллографе также должно изменяться плавно и непрерывно.

Если напряжение меняется скачкообразно, или имеются пики напряжения, выходящие из допустимого диапазона напряжения, это означает, что сенсор положения воздушной заслонки неисправен.

Микротрещины и прочие неисправности могут привести к сбоям в работе при низких температурах. Эти сбои могут не проявляться при прогретом двигателе.

Датчик температуры испарителя

Место установки: на испарителе. Физический принцип действия: NTC-резистор. Назначение/принцип действия: измеряет температуру поверхности охлаждающих ребер испарителя. В зависимости от температуры изменяется сопротивление, а следовательно, падение напряжения на на измерительном элементе.

Опорное напряжение примерно 5 В. Тип сигнала: постоянное напряжение: 0,1 – 4,9 В. При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром DMM.

Ультразвуковой датчик системы помощи при парковке

Место установки в переднем или заднем бампере. Ультразвуковые датчики системы помощи при парковке измеряют расстояние между местом установки датчика и препятствием. В зависимости от измеренного расстояния он выдает цифровой частотно модулированный сигнал. Чем меньше расстояние, тем выше частота.

Напряжение питания примерно 8 В / 12 В. Тип сигнала: цифровой. Частота 46,5 кГц – 50 кГц. Область измерений: 30 см – макс. 150 см.

В регистраторе данных рекомендуется отображать вид сигналы гистограммой. Форма бампера определяет разное расстояние между препятствием и внешними/внутренними датчиками парктроника автомобиля.

Значения соответствуют расстоянию до препятствия, включая определенное отклонение, которое из соображений безопасности включается в расчеты.

Системы, в которых для управления помощью при парковке используется отдельный модуль, можно проверить с помощью интегрированной самодиагностики.

В некоторых системах для этого нужно активировать систему помощи при парковке (Valeo) или перед включением отсоединить кодирующий разъем (Bosch). Подробное описание действий по запуску теста можно найти в руководстве по обслуживанию автомобиля.

Работу сенсора можно также проверить легким прикосновением к активированному сенсору, при этом палец должен ощутить вибрацию поверхности.

Кроме того, следует следить за тем, чтобы сенсоры находились в безупречном состоянии и не были загрязнены. Слой лакокрасочного покрытия должен иметь точно определенную толщину.

При сильном дожде и/или физически неблагоприятных условиях отражения не гарантировано стопроцентное распознавание приближающихся препятствий, т. к. ультразвуковые волны могут отклоняться.

Лямбда-зонды – датчики содержания кислорода в отработавших газах (HO2S)

Место установки в выпускной системе, в зависимости от назначения перед или за трехкомпонентным каталитическим нейтрализатором.

Примечание: В автомобилях с системой прямого (непосредственного) впрыска за катализатором NOx находится третий датчик HO2S.

Физический принцип действия: гальванический элемент. HO2S измеряет содержание оставшегося кислорода в потоке отработанных газов. Его сигнал позволяет установить, какая смесь сжигается – богатая или бедная.

Используемые в автомобилях датчики кислорода содержат нагревательный элемент (резистор) для обеспечения работы при низких температурах отработавших газов. Соединение с массой осуществляется через разъем соответствующего PCM. Электропитание подается на лямбда-зонд только для работы его нагревательного элемента (резистора).

Триггерный (переключающийся) HO2S (NTK)

Элемент зонда состоит из керамического тела (двуокись циркония), на который снаружи и изнутри нанесены пропускающие газ слои платины (электроды).

Зонд омывается снаружи отработавшими газами с малой концентрацией кислорода. Внутрь зонда поступает наружный воздух, содержащий 21% кислорода.

При температуре выше 300 °C элемент зонда начинает проводить ионы кислорода (появляется ЭДС).

При сжигании бедной смеси в отработавших газах содержится высокая доля остаточного кислорода, при сжигании богатой смеси – низкая доля остаточного кислорода. Это регистрируется триггерным (переключающимся) HO2S – вызывает в нем перемещение ионов.

Созданный ионами ток обуславливает скачкообразный рост или падение напряжения зонда. Этот скачок напряжения используется для так называемого лямбда-регулирования (регулирования состава смеси).

В соответствии с долей кислорода в потоке отработавших газов между электродами лямбда-зонда появляется разность потенциалов в диапазоне от 0,1 В (бедная смесь) до 0,9 В (богатая смесь).

Напряжение питания нагревательного элемента примерно 12 В. Тип сигнала: пульсирующее постоянное напряжение: 0,1 – 0,9 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C примерно 5 Ом.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и осциллографом. Сигнал отображается в регистраторе данных.

На рисунке показаны сигналы лямбда-зондов HO2S, установленных до (O2S11) и после (O2S12) каталитического нейтрализатора.

За счет нейтрализации отработавших газов в трехкомпонентном каталитическом нейтрализаторе изменение напряжения на лямбда-зонде HO2S после катализатора невелико (условие: трехкомпонентный каталитический нейтрализатор работает эффективно).

Работу HO2S можно проверить с помощью тестера HO2S. Для этого необходимо соблюдать рекомендации производителя тестера HO2S.

Условия проведения измерений: двигатель прогрет до рабочей температуры. Измерение необходимо выполнять при работающем двигателе. Если нет тестера HO2S, то указанные значения напряжения можно измерить также с помощью аналогового мультиметра DDM. Для этого с помощью соответствующего кабель-адаптера необходимо соединить PCM, жгут проводов и диагностический прибор.

Планарный (с пластинчатым чувствительным элементом) триггерный (переключающийся) лямбда-зонд HO2S

Планарный (с пластинчатым чувствительным элементом) триггерный (переключающийся) лямбда-зонд HO2S (Bosch) – это усовершенствованный триггерный лямбда-зонд HO2S (NTK). Он имеет такую же скачкообразно переключающуюся характеристику, что и обычный триггерный лямбда-зонд HO2S (NTK).

Обозначение «планарный» для лямбда-зонда HO2S означает, что твердый электролит чувствительного элемента состоит из плоских пленок. Планарный чувствительный элемент зонда имеет форму вытянутой пластины прямоугольного сечения.

Под оболочкой лямбда-зонда HO2S заключен плоский (планарный) керамический корпус с чувствительным элементом. Внешняя сторона электрода омывается потоком отработавших газов, внутренняя соединена с сообщающимся с атмосферой воздушным каналом (наружный воздух). Разница в концентрации кислорода между внешним и внутренним электродами обуславливает возникновения разности потенциалов на электродах.

Напряжение накала примерно 11 — 14 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C в диапазоне 7 – 15 Ом. Тип сигнала: пульсирующее постоянное напряжение: 0,1 – 0,9 В.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии), цифровым мультиметром (аналоговая индикация) и осциллографом. Сигнал отображается в регистраторе данных.

Работу HO2S можно проверить с помощью тестера HO2S. Для этого необходимо соблюдать рекомендации производителя тестера HO2S. Условия проведения измерений: двигатель прогрет до рабочей температуры. Измерение необходимо выполнять при работающем двигателе.

Планарный (с пластинчатым чувствительным элементом) широкополосный лямбда-зонд HO2S

Планарный широкополосный лямбда-зонд позволяет выполнять измерения в отработавших газах, не соответствующих стехиометрическому соотношению (лямбда = 1).

Широкополосный HO2S может измерять коэффициент избытка воздуха лямбда в диапазоне 0,7 – 2,8, причем он выдает однозначный, непрерывный сигнал тока (так называемый ток накачки – ток, потребляемый элементом кислородной накачки, об этом см. ниже).

Это свойство широкополосного лямбда-зонда HO2S позволяет использовать его не только в системах управления бензиновых двигателей, работающих на почти стехиометрической (ни бедной, ни богатой) смеси (лямбда = 1), но и в системах управления бензиновых двигателей, работающих на обедненных смесях (лямбда > 1).

Пример: планарный широкополосный лямбда-зонд HO2S в системе прямого (непосредственного) впрыска бензина.

Широкополосный HO2S состоит из гальванического элемента Нернста и элемента кислородной накачки, транспортирующего ионы кислорода. Между элементом кислородной накачки и гальваническим элементом Нернста есть диффузионный зазор, в который поступают отработавшие газы. Он является областью измерения.

Гальванический элемент Нернста с одной стороны связан каналом с наружным воздухом, а с другой стороны с областью измерения. Он работает как обычный триггерный лямбда-зонд, выдавая сигнал, соответствующий коэффициенту избытка воздуха в области измерения.

В область измерения организовывается такой приток ионов кислорода, чтобы коэффициент избытка воздуха лямбда в ней был равен 1 (это делается с помощью элемента кислородной накачки).

Электронный блок, запитываемый опорным напряжением, анализирует создаваемую гальваническим элементом разность потенциалов и управляет током накачки ионов кислорода с целью поддержания этой разности потенциалов на определенном неизменном уровне. Генерируемая таким образом величина тока накачки и является выходным сигналом лямбда-зонда, по которому судят о концентрации кислорода в отработавших газах.

При наличии отработавших газов с большим содержанием кислорода (работа двигателя на бедных смесях) основной элемент кислородной накачки управляется таким образом, что он откачивает ионы кислорода из области измерения. Управление осуществляет электронный блок; направление тока при этом положительное.

При наличии отработавших газов с малым содержанием кислорода (работа двигателя на богатых смесях) элемент кислородной накачки управляется таким образом, что он накачивает ионы кислорода в измерительное пространство (электрический ток в обратную сторону). Управление осуществляет электронный блок; направление тока при этом отрицательное.

По току накачки однозначно определяется состав смеси. Коэффициенту избытка воздуха лямбда = 1 (14,7 кг воздуха на 1 кг топлива) соответствует ток накачки 0 мА.

Напряжение питания нагревательного элемента примерно 11 – 14 В. Сопротивление для нагревательного элемента лямбда-зонда при +20 °C составляет 2,4 – 4,1 Ом. Ток/тип сигнала: аналоговый сигнал постоянного тока, мА.

При неисправности заносится код ошибки (DTC). Проверяется направленной диагностикой (при наличии) и цифровым мультиметром (аналоговая индикация). В регистраторе данных отображается только значение лямбда широкополосного HO2S.

Заключение

Электронное управление и регулирование открывает множество возможностей. Оно улучшает безопасность движения и комфорт водителя с пассажирами. Одновременно с этим машина становится все более экономичной и экологичной.

Современный автомобиль уже невозможно представить без электронных блоков управления со своими датчиками и исполнительными устройствами. Все важные функции автомобиля управляются и регулируются посредством компактных электронных блоков и датчики автомобиля обеспечивают эту работу.

Подробно изучить принципы работы и электронное устройство датчиков автомобиля можно в главе “основы автоэлектрики” статьи “Компьютерная диагностика: основы обучения”.

Стремительно развиваются системы управления двигателем и коробкой передач, системы обеспечения безопасности, а также множество систем обеспечения комфорта. Этому развитию нет конца. Подписывайтесь на рассылку новых статей, чтобы быть в курсе последних разработок.

Источник

Датчики систем управления двигателем

Датчики систем управления двигателем

Датчиковая аппаратура – важная и неотъемлемая часть системы управления двигателем. Прежде чем начинать подробный разговор обо всем многообразии датчиков и методиках их диагностики, нужно ввести несколько фундаментальных понятий.

Что такое датчик, зачем он нужен, какую функцию выполняет?

Основным элементом системы управления двигателем является электронный блок управления (ЭБУ). Он способен воспринимать информацию только в виде электрических сигналов, характеризующихся тем или иным значением напряжения, частоты, скважности и т.п. Но параметры работы двигателя носят чисто физические характеристики. Чтобы сообщить их блоку управления, необходимо преобразовать физическую величину в величину электрическую, пригодную для обработки в блоке управления в соответствии с заложенной в него программой. Итак,

Датчик – это элемент системы управления двигателем, задача которого состоит в преобразовании физических величин, характеризующих работу двигателя, в электрические величины, пригодные для обработки электронным блоком управления.

Перечислим физические величины и явления, информация о которых необходима блоку управления:

  • температура;
  • давление;
  • частота вращения;
  • концентрация;
  • количество воздуха;
  • пространственное положение;
  • вибрация.

Перечисленную совокупность датчики преобразуют в электрические параметры:

  • напряжение;
  • ток;
  • частота.

Датчики систем управления двигателем

Принцип диагностики датчиковой аппаратуры

Диагностика любого датчика ЭСУД сводится к проверке адекватности преобразования физического параметра в электрический параметр.

Необходимо установить заведомо известное значение параметра на входе датчика и проконтролировать его выходной сигнал при помощи мотортестера или сканера.

Простой пример: датчик абсолютного давления во впускном коллекторе. В качестве эталона можно использовать атмосферное давление, которое будет присутствовать во впускном коллекторе заглушенного двигателя. Проконтролировав отображаемое датчиком в этом состоянии давление при помощи сканера, можно сделать вывод о достоверности его показаний.

Приведенный пример весьма примитивен, он призван лишь продемонстрировать общий принцип диагностики датчиковой аппаратуры. В обучающем курсе «Диагностика датчиковой аппаратуры» методики проверки каждого типа датчиков описаны очень подробно.

Предположим, есть некий датчик, подключенный к ЭБУ, и есть необходимость оценить его работоспособность (см. рисунок). Рассмотрим классическую схему подключения датчиков к блоку.

С блока управления на датчик подается питающее напряжение 5 В и масса. Сигнал с датчика поступает в блок и обрабатывается им.

Датчики систем управления двигателем

Для проверки исправности датчиков применяются два основных диагностических прибора: сканер и мотортестер.

Подключив сканер, диагност получает возможность «увидеть» сигнал датчика «глазами» блока управления. Для того чтобы оценить выходной сигнал датчика при помощи мотортестера, необходимо подключить его щупы к цепи датчика, как показано на рисунке: один к массе, другой к сигнальному проводу.

Работа сканером более проста и удобна, но не следует забывать, что обмен информацией между ЭБУ и сканером происходит отнюдь не мгновенно, и какие-то интересные моменты сигнала можно попросту не обнаружить. Помимо этого, сканер невозможно использовать на достаточно старых автомобилях, примерно до середины девяностых годов, вследствие низкого уровня интеллекта и быстродействия тогдашних блоков управления.

Напротив, мотортестер позволяет оценить сигнал датчика очень качественно и подробно, не пропустив ни малейшей детали, хотя трудоемкость его применения выше, чем у сканера. Обратите внимание на то, что щупы мотортестера правильнее всего подключать непосредственно к разъему датчика. Особенно это касается щупа массы: не следует присоединять его к первой попавшейся точке массы двигателя.

Краткие итоги

Датчик представляет собой преобразователь физического параметра в параметр электрический, пригодный для обработки в ЭБУ. Физическими параметрами можно назвать температуру, давление, концентрацию, пространственное положение, количество воздуха, вибрацию. Электрические параметры, с которыми оперируют датчики, это напряжение, ток, частота. Проверку датчиков можно выполнить двумя приборами: сканером, подключив его к ЭБУ, и мотортестером, подключив его щупы непосредственно к сигнальному и массовому выводам датчика.

Особенности электрического подключения датчиков к цепям ЭСУД

Каким образом датчики подключаются к блоку управления?

Схема подключения датчиков представляет собой очень важный момент. Обратимся к рисунку.

Датчики систем управления двигателем

Существует так называемая «масса», или общий провод электропроводки автомобиля. Она объединяет металлические части кузова и двигателя и подключается к минусовой клемме аккумулятора. Большинству датчиков требуется подключение к массе в силу особенностей их работы. ЭБУ также подключается к массе, на рисунке это точка 1.

Рассмотрим, каким образом подключается масса датчиков. На первый взгляд, массу можно подключить к датчику в любой ближайшей точке двигателя или кузова (точка 2), а сигнальный вывод датчика подключить к одному из контактов в разъеме блока. Посмотрим на полученную схему критически.

Что получается?

А получается, что цепь датчика включает в себя участок кузова или двигателя автомобиля между точками 2 и 1. Одновременно с этим по кузову идут токи мощных нагрузок вроде ламп головного света, вентиляторов, электродвигателей стеклоочистителя и т.п. Получается, что по одному и тому же пути идут слабые токи датчика, содержащие полезную информацию, и большие токи мощных нагрузок. В итоге в цепи датчика возникают сильные помехи от электроприборов автомобиля и системы зажигания.

Такая ситуация совершенно недопустима, и подобное подключение массы датчиков (за редчайшим исключением) нигде не используется.

Куда же подключается масса датчиков? Она подключается непосредственно к блоку управления.

Датчики систем управления двигателем

В такой ситуации цепь датчика оказывается не привязанной к цепи протекания токов нагрузок и сигнал датчика без помех и искажений поступает в ЭБУ. Сам блок, конечно же, подключен к массе автомобиля. Внутренняя структура ЭБУ, его характерные дефекты и методики ремонта изложены в обучающем курсе «Ремонт электронных блоков управления».

Если открыть любую базу данных и посмотреть назначение выводов ЭБУ, то можно увидеть назначение выводов вроде «Масса датчика положения дроссельной заслонки», «Масса датчика абсолютного давления» и т.п. Отдельным выводом выполнена «Масса электронного блока управления». Вот это и есть точка подключения массы ЭБУ, а массы всех датчиков подключаются к ЭБУ отдельно, внутри него они соединяются вместе и подключаются к массе блока.

Убедиться в сказанном достаточно просто с помощью тестера: достаточно прозвонить цепь массы любого датчика на минусовую клемму аккумулятора, а затем, сняв разъем с ЭБУ, убедиться, что цепь разорвалась.

В качестве примера приведем часть схемы ЭСУД с блоком управления MR-140.

Датчики систем управления двигателем

Несложно убедиться в том, что массы датчика температуры охлаждающей жидкости (Engine Coolant Temperature, ECT Sensor), датчика положения дроссельной заслонки (Throttle Position, TP Sensor), датчика температуры воздуха (Intake Air Temperature, IAT Sensor) объединены сборкой S101 и подключены к выводу М64 блока управления, обозначенному как вывод массы. В эту же точку подключены выводы массы и экранирующей оплетки датчика детонации (Knock Sensor). Массы датчиков давления в системе кондиционирования воздуха (Air Condition Pressure, ACP Sensor) и датчика неровной дороги (Rough Road Sensor) также объединены и подключены к выводу К34 электронного блока.

Есть два исключения из этого правила: резонансный датчик детонации конструкции GM, который применялся на первых системах управления ВАЗ, и однопроводной датчик концентрации кислорода. Но это исключения, а отнюдь не правило.

К сожалению, многолетняя практика диагностики двигателей дает право констатировать, что вышеизложенные факты понимают далеко не все специалисты автосервиса.

Приходилось видеть двигатели, в электропроводку которых было произведено вмешательство с целью создать более надежный контакт массы датчика расхода воздуха. При этом провод массы подсоединялся непосредственно к выводу датчика и к минусовой клемме аккумулятора. Такое решение совершенно недопустимо. Оно приводит к значительному повышению уровня помех в цепи датчика вследствие образования контура и даже может при определенных обстоятельствах вызвать выход ЭБУ из строя. Никакое изменение схемы подключения датчиков, никакое привнесение лишних проводов в ЭСУД недопустимо.

Существуют датчики, информацию с которых необходимо донести до ЭБУ максимально качественно, без помех. Примером может служить датчик положения коленчатого вала. В таком случае провода от датчика до ЭБУ заключают в экран, представляющий собой гибкую оплетку из алюминиевой фольги либо тонкого провода. Назначение экрана – защита цепи датчика от внешних электромагнитных помех. Сам экран также подключается к массовому проводу системы и обозначается на электрической схеме в виде пунктирного контура вокруг проводов. Примером такого подключения служит датчик детонации на рисунке выше.

Разновидности датчиков. Принцип работы и методики проверки

Если изучать датчиковую аппаратуру, опираясь на существующие руководства по ремонту той или иной марки автомобилей, то можно обнаружить, что в каждом руководстве используется один и тот же подход. Перечисляются датчики, входящие в состав описываемой системы управления, и озвучивается их назначение. Для другого двигателя и другой системы опять-таки перечисляются датчики и т.д.

В некоторых книгах датчики ЭСУД и контрольные датчики, необходимые, например, для работы панели приборов (датчик давления масла, уровня охлаждающей жидкости и т.п.) вообще свалены в одну кучу. Такой подход представляется неконструктивным и не отображающим истинной картины.

Рассматривая датчиковую аппаратуру, мы будем применять другой метод подачи информации. Все датчики будут рассматриваться не по признаку наличия их на той или иной ЭСУД, а по принципу действия, по физическому явлению, лежащему в основе их функционирования.

Такой подход видится гораздо более правильным и доступным для понимания. Датчики одного и того же принципа действия используются в абсолютно разных узлах автомобиля, и для диагноста, усвоившего принцип их работы и методику диагностики, не составит труда проверить работоспособность любого из них.

Например, датчик уровня топлива, датчик расхода воздуха флюгерного типа, датчик положения клапана рециркуляции отработанных газов и датчик положения педали акселератора, несмотря на кажущуюся несхожесть, диагностируются абсолютно одинаково, по одному и тому же принципу.

Поэтому будем рассматривать не наборы датчиков для той или иной системы управления, а их типы, исходя из физического принципа функционирования. Для примера разберем датчики потенциометрического типа.

Датчики потенциометрического типа

Это один из самых несложных в понимании принципов действия и диагностики типов датчиков.

Что такое потенциометр?

Его смысл зашифрован в самом названии: это измеритель электрического потенциала.  В электрических схемах потенциометр обозначается следующим образом: стандартное обозначение резистора, но со стрелкой, символизирующий подвижный контакт.

Если на верхний вывод потенциометра подать напряжение, скажем, 12 В, а нижний соединить с массой, то при перемещении полозка потенциометра напряжение между массой и сигнальным выводом будет изменяться от нуля до 12 В. Это в идеальном случае, в реальности же напряжение не будет доходить до нуля и до 12 В. Конструктивно датчик представляет собой резистивную дорожку в форме дуги или подковы, по которой перемещается ползунок. Один конец резистивной дорожки подключается к массе, на другой подается питающее напряжение. С ползунка снимается выходной сигнал.

Такой потенциометр использовался когда-то давно на радиоэлектронной аппаратуре для регулировки громкости звука: на него подавалось напряжение звуковой частоты, а с полозка оно снималось и шло на усилитель. В итоге, вращая ручку регулятора, можно было установить желаемый уровень громкости.

Где такой датчик можно применять в автомобиле?

Совершенно очевидно, его можно использовать там, где необходимо измерить пространственное положение какого-либо узла. Не важно, какого именно. Если узел подвижный, если он перемещается и занимает различные положения, а нам необходимо это положение определить, то практически повсеместно для этого используются датчики потенциометрического типа.

Классический пример датчика положения – указатель уровня топлива в баке. Поплавок с рычагом, установленный на шарнир и имеющий возможность перемещаться в одной плоскости. Рычаг соединен с полозком потенциометрического датчика. Напряжение с полозка подается на панель приборов и отклоняет стрелку указателя. Нужно отметить, что такая схема работы указателя уровня топлива уже весьма устарела и на большинстве современных автомобилей, оснащенных электронной панелью приборов, не применяется.

Датчики систем управления двигателем

Где датчики такого типа используются на двигателе? Перечислим основные области применения:

  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик положения педали акселератора (ДППА);
  • датчик положения клапана рециркуляции отработанных газов;
  • датчик объемного расхода воздуха флюгерного типа;
  • датчик положения заслонок впускного коллектора.

Перечислено далеко не все. Одним словом, везде, где нужно иметь информацию о пространственном положении узла, применяются датчики потенциометрического типа.

Методы диагностики таких датчиков рассмотрим на примере датчика положения дроссельной заслонки. Он устанавливается на дроссельном узле и преобразует в напряжение текущее положение дроссельной заслонки. На датчик подается напряжение 5 В с ЭБУ, но конструктивно датчик выполнен таким образом, что напряжение на нем никогда не будет равно 0 или 5 В. Это сделано для того, чтобы ЭБУ мог контролировать цепь датчика и различать нулевое положение и короткое замыкание сигнальной цепи на массу либо напротив, положение максимального открытия дросселя и замыкание на питающее напряжение 5 В. Поэтому в реальности напряжение на датчике изменяется не от 0 до 5 В, а от 0.3..0.5 В до 4.5..4.7 В.

Проверить работоспособность датчика можно двумя способами:

  1. Сканером. Для выполнения проверки нужно подключить сканер, войти в режим «Поток данных» и найти в списке напряжение на датчике. Затем, медленно поворачивая дроссельную заслонку от закрытого до полностью открытого состояния, контролировать численное значение напряжения. Оно должно нарастать плавно, без падений до нуля или бросков до максимального значения. Как вариант, можно оценивать не напряжение, а рассчитанное блоком положение заслонки в процентах. Опять-таки, количество процентов должно расти плавно, без хаотических появлений 0% и 100%. Следует отметить, что вследствие конечной скорости обмена между ЭБУ и сканером при такой методике проверки возможен пропуск дефектного места на резистивной дорожке датчика.
  2. Мотортестером. Измерение выполняется в режиме самописца. Щупы мотортестера необходимо подключить к массе и сигнальному выводу датчика. Включить зажигание. Плавно перемещая дроссельную заслонку, наблюдать за осциллограммой. Проверка мотортестером является наиболее достоверной, позволяет обнаружить малейшие нарушения резистивного слоя, и для полноценной диагностики датчика необходимо отдавать предпочтение именно ей.

Рассмотрим несколько примеров осциллограмм исправных и неисправных датчиков потенциометрического типа.

Датчики систем управления двигателем

Осциллограмма исправного датчика. Напряжение нарастает плавно, без скачков и провалов.

Датчики систем управления двигателем

Датчик неисправен. Имеется износ резистивного слоя, приводящий к небольшим скачкам напряжения.

Датчики систем управления двигателем

Сильный износ резистивного слоя. Броски напряжения достигают максимально возможного.

Рассказать о диагностике всех типов датчиков в рамках одной статьи невозможно. Все тонкости и нюансы диагностики датчиков термоанемометрического, терморезистивного, пьезоэлектрического и других подробно рассмотрены в обучающем курсе «Диагностика датчиковой аппаратуры»

Руководства по ремонту — Бензиновые двигатели EA211 — Датчики
4 901 просмотров
0

Датчик давления наддува с датчиком температуры воздуха на впуске ввёрнут в нагнетающую магистраль непосредственно перед блоком дроссельной заслонки. Он измеряет давление и температуру в этой области. Использование сигнала С помощью […]


Руководства по ремонту — Бензиновые двигатели EA211 — Датчики
5 303 просмотров
0

Датчик давления во впускном коллекторе с датчиком температуры воздуха на впуске ввёрнут во впускной коллектор за интеркулером. Он измеряет давление и температуру в этой области. Использование сигнала На основании сигналов […]


Руководства по ремонту — Бензиновые двигатели EA211 — Датчики
5 934 просмотров
1

Датчик числа оборотов двигателя G28 Датчик числа оборотов двигателя со стороны коробки передач интегрирован в крышку коленвала, которая, в свою очередь, привинчена к блоку цилиндров. Датчик сканирует задающий ротор 60-2 […]


Руководства по ремонту — Бензиновые двигатели EA211 — Датчики
4 840 просмотров
0

Датчик давления топлива G247 Датчик находится на стороне зубчатого ремня на нижней части впускного коллектора и ввёрнут в топливную рампу. Он измеряет давление топлива в контуре высокого давления и передаёт […]


Датчики ВАЗ — основные датчики на инжекторных автомобилях ВАЗ

Итак, уважаемые посетители, сегодня мы вам расскажем про основные датчики на ВАЗ. Поскольку принцип работы инжекторных двигателей у линейки автоВАЗа один, то в принципе мы свели воедино мануал по датчикам, которые устанавливаются на инжекторные ВАЗы заводом изготовителем, подготовили краткое описание принципов работы и назначения каждого из нижеприведенных датчиков. Ведь по сути сам принцип работы инжекторного двигателя это взаимосвязанная работа «мозгов» (ЭБУ) и различного рода датчиков, между ними идет постоянный обмен информацией и в зависимости от совокупности тех или иных показателей датчиков контроллер готовит смесь и обеспечивает устойчивую и правильную работу двигателя.

Итак начнем с датчика положения коленчатого вала ДПКВ. (на фото выше)

Без этого крайне важного датчика и в случае его неисправности автомобиль просто не заведется. ДПКВ формирует сигналы на ЭБУ при помощи специального зубчатого диска, на котором при внимательном рассмотрении, можно увидеть как бы «недостающий» зуб, этот диск установлен непосредственно на коленвале. ДПКВ на ВАЗах расположен на крышке масляного насоса. Датчик достаточно надежен и его выход из строя редкость. Но тем не менее если он выйдет из строя у вас будут проблемы. Рекомендуем возить его с собой в бардачке на всякий случай.

Поехали дальше. Еще один немаловажный датчик — Датчик положения дроссельной заслонки ДПДЗ.

Этот датчик работает в связке с регулятором холостого ходя, и определяет насколько открыта дроссельная заслонка. Если данный датчик начинает глючить или вообще выходит из строя, то устойчивого холостого хода нам не видать и обороты двигателя будут жить своей жизнью. Так же могут ощущаться провалы, двигатель будет тянуть рывками, в общем мало приятного.

Теперь нашему взору представлен датчик фаз, или Датчик положения распределительного вала ДПРВ.

Он определяет положение распредвала. Не применялся на 8 клапанных моторах ранних инжекторных ВАЗов. Участвует в формировании фазированного вспрыска, то есть работает в нужный момент нужная форсунка конкретного цилиндра. Если датчик неисправен, то система работает словно его нет, и подача топлива происходит в попарно-параллельном режиме, что приводит к перерасходу бензина со всеми вытекающими. То есть ездить можно, но не нужно, лучше заменить неисправный датчик.

Теперь рассмотрим Датчик Детонации ДД.

Он устанавливается непосредственно на блоке двигателя между третьим и вторым цилиндром. Бывает двух типов – резонансный и широкополосный. Эти два типа датчиков не взаимозаменяемы. Соответствует своему наименованию целиком и полностью, следит за детонацией двигателя и в зависимости от наличия и силы детонации помогает «мозгам» корректировать УОЗ (угол опережения зажигания). В случае выхода датчика из строя двигатель будет тупить и возрастет расход бензина.

Теперь перейдем ко всем нам хорошо знакомому датчику, который и в карбюраторных авто играл немаловажную роль – это датчик температуры охлаждающей жидкости ДТОЖ.

Контролирует температуру ОЖ, передает информацию об этом в ЭБУ, и тот, помимо включения-выключения вентилятора радиатора использует ее еще для массы нужд, начиная от работы клапана адсорбера и заканчивая регулировкой оборотов на холодном двигателе

Теперь следующий датчик – Датчик скорости.

Формирует импульсы в зависимости от скорости автомобиля, устанавливается на КПП, на всех инжекторных ВАЗах используются исключительно шести импульсные ДС. Помимо показаний спидометра и одометра влияет так же на смесеобразование, так что не пренебрегайте его исправностью.

Следующий в нашем мануале датчик – это датчик массового расхода воздуха ДМРВ.

Датчик играет весомую роль в работе двигателя, так что очень часто симптомами его неверной работы является плавающий холостой ход, неровная работа двигателя на малых оборотах, ухудшение тяги, в общем мало приятного. Расположен сразу после воздушного фильтра и контролирует количество воздуха забираемое извне. Достаточно дорогостоящий датчик. О том как проверить его работоспособность и попробовать восстановить его в случае неисправности читайте в этой статье.

Лямбда зонд или датчик концентрации кислорода

определяет количество кислорода в выхлопных газах, принимает активное участие в смесеобразовании двигателя. На евро-2 установлена 1 лямбда, на евро-3 уже две, но вторая не участвует в смесеобразовании а просто исполняет контролирующую функцию. При пробеге 80-100 тысяч километров вполне может выйти из строя или засориться и давать неверные показания, соответственно гарантировано ухудшение динамики двигателя и перерасход топлива.

Ну и на закуску один из самых капризных датчиков — Регулятор холостого хода (РХХ)

данный датчик отвечает за стабильный холостой ход. Пропускает воздух в двигатель на холостых оборотах в обход ДПДЗ. Именно от него в первую очередь зависит стабильный ХХ на нужных оборотах, очень часто выходит из строя, так же очень большой процент брака среди новых датчиков. Ну вот вкратце и все, надеемся что краткий ликбез по датчикам, применяемым на инжекторных ВАЗах помог вам составить для себя картину работы инжекторного двигателя. Всем удачи на дорогах.

Источник

Про датчики автомобилей LADA и систему управления двигателем

За работу всех систем современного автомобиля отвечают различные датчики. Они снимают показания и передают их электронному блоку управления двигателем (ЭБУ). В случае неисправности датчика в памяти сохраняется ошибка, а на щитке приборов в некоторых случаях появляется ошибка Check Engine.

Где находятся датчики

Все современные автомобили Лада (Гранта, Калина, Приора, Веста, Ларгус, Нива или Lada XRAY) оснащаются отечественными двигателями ВАЗ. Расположение датчиков на этих моторах однотипное:

Элементы электронной системы управления двигателя ВАЗ 11186/11189: 1* – контроллер; 2* – датчик положения коленчатого вала; 3* – управляющий датчик концентрации кислорода; 4* – колодка диагностики; 5* – диагностический датчик концентрации кислорода; 6 – блок управления дроссельного узла; 7* – датчик скорости автомобиля; 8* – клапан продувки адсорбера; 9* – модуль педали «газа»; 10* – выключатель сигналов торможения; 11* – датчик положения педали сцепления; 12 – аккумуляторная батарея; 13 – датчик массового расхода воздуха; 14 – датчик температуры охлаждающей жидкости; 15 – катушка зажигания; 16 – датчик детонации; 17 – свечи зажигания; 18* – форсунки. * Элемент на фото не виден.

Расположение элементов ЭСУД в салоне автомобиля (для наглядности без торпедо): 1 – датчик положения педали сцепления; 2 – выключатель сигналов торможения; 3 – модуль педали «газа»; 4 – контроллер.

Датчик температуры охлаждающей жидкости (ДТОЖ)

Предназначен для измерения температуры охлаждающей жидкости в системе охлаждения двигателя. На основании показателей ЭБУ корректирует частоту вращения коленвала, состав топливно-воздушной смеси и угол опережения зажигания. Датчик практически не ломается, но бывает, врёт. Довольно часто перетираются провода у основании разъёма так, что даже припаять не к чему. Датчик температуры охлаждающей жидкости установлен в крышке термостата.

Датчик детонации (ДД)

Предназначен для определения момента возникновения высокочастотных колебаний блока цилиндров, которые возникают при детонационном сгорании топлива. По сигналу датчика электронный блок управления двигателем выбирает оптимальный угол опережения зажигания, что позволяет добиться наиболее полного и эффективного сжигания топливо-воздушной смеси в цилиндрах двигателя, а также автоматически регулировать момент зажигания для топлив с различным октановым числом. Датчик детонации находится на передней стенке блока цилиндров между 2?м и 3?м цилиндрами.

Датчик положения коленчатого вала (ДПКВ)

Датчик выдает блоку управления информацию о частоте вращения и угловом положении коленчатого вала. По сигналам датчика ЭБУ рассчитывает фазу и длительность импульсов управления форсунками и катушкой зажигания. При его неисправности (отсутствии сигнала) двигатель не заведется. Он находится в отверстии прилива крышки масляного насоса.

Датчик положения распределительного вала (датчик фаз)

Предназначен для формирования сигнала, по которому ЭБУ определяет верхнюю мертвую точку поршня первого цилиндра при такте сжатия. Принцип действия датчика основан на эффекте Холла. Если датчик неисправен, ЭБУ переводит систему на резервный режим работы. Двигатель может работать неустойчиво, глохнуть или плохо заводиться. ДПРВ не подлежит ремонту. В случае его неисправности его меняют на новый.

ДАД и ДТВ

Датчик абсолютного давления (ДАД) и датчик температуры воздуха (ДТВ) используются на двигателях ВАЗ 21129 и ВАЗ 21179. Они объединены в одном корпусе, который установлен на ресивере модуля впуска. Более детально о них рассказывается тут.

Датчик кислорода (ДК) или лямбда-зонд

Датчик концентрации кислорода позволяет оценивать количество оставшегося несгоревшего топлива или кислорода в выхлопных газах. Сигнал используется блоком управления для поддержания оптимального соотношения воздуха к бензину в камере сгорания. Установлен в катколлекторе до каталитического нейтрализатора отработавших газов.

Датчик массового расхода воздуха (ДМРВ)

Этот важный датчик располагается за воздушным фильтром двигателя. Также его называют расходомер воздуха. Его назначение — оценка количества воздуха, поступающего в двигатель автомобиля. На основании информации, получаемой с датчика, электронный блок управления (ЭБУ) вычисляет необходимый объем топлива, чтобы поддерживать стехиометрическое соотношение топлива и воздуха для заданных режимов работы двигателя.

Датчик скорости автомобиля (ДС)

Служит для измерения скорости автомобиля и передачи этой информации на ЭБУ. Его поломка напрямую связана с неработающим спидометром. Датчик скорости автомобиля установлен сверху на картере сцепления, над корпусом внутреннего шарнира привода правого переднего колеса. Его замена весьма проста.

Датчик давления масла

Датчик давления масла связан с модулем управления двигателем. Если давление моторного масла опускается ниже предельного значения, то контакты датчика размыкаются. Находится он за головкой блока цилиндров, недалеко от кожуха ремня ГРМ.

Клапана управления длиной каналов системы впуска

Впускной коллектор с изменяемой геометрией АВТОВАЗ начал устанавливать начиная с двигателя ВАЗ-21127. Такая конструкция позволяет достичь максимального крутящего момента на низких оборотах и максимальной мощности на высоких. Регулирование длины впускного коллектора (переключение с одной длины на другую) производится с помощью клапана, входящего в состав системы управления двигателем.

Датчики сцепления и тормоза

По сигналам датчика положения педали сцепления и выключателя сигналов торможения контроллер различает нажатое и не нажатое положения педалей. При нажатой педали сцепления контроллер отключает регулирование нагрузки двигателя. Оба датчика находятся на педальном узле.

На некоторых вариантах исполнения автомобилей используется электронный привод дроссельной заслонки (Е-газ). Напомним, чтобы понять какие ошибки записаны в ЭБУ следует их расшифровать.

Поделиться в социальных сетях:

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter..

Источник

Все датчики инжектора автомобилей Лада: Расположение и неисправности

В данной статье рассказывается обо всех датчиках инжектора на автомобилях семейства ВАЗ. Статья обобщенная, так как все датчики, устанавливающиеся на автомобили Волжского автомобильного завода, идентичны между собой и даже взаимозаменяемы.

Изучив статью, Вы с легкостью сможете определить расположение датчика, понять его признаки неисправности, а так же узнаете о его назначении. В данном материале рассказывается только о датчиках на инжекторных автомобилях, так как в карбюраторных версиях датчиков управления двигателем ничтожно мало, да и к тому же, карбюраторных автомобилей становится все меньше и меньше.

Блок управления двигателем

На всех инжекторных Ладах имеется специальный блок, который считывает и обрабатывает показания со всех датчиков в системе автомобиля. Этот блок представляет собой небольшую деталь из пластика и металла, внутри которой имеется микросхема с множеством радиодеталей. Именно этот блок подает сигналы на бензонасос, форсунки и модуль зажигания, а так же формирует угол опережения зажигания, контролирует работы вентиляторов и т.п. Это своего рода головное устройство автомобиля.

Расположение

Во всех моделях лады он находится в салоне, в классических моделях Лады он расположен под вещевым ящиком, в переднеприводных же Ладах ЭБУ располагается под центральной консолью. Проблемным местом расположение ЭБУ можно назвать в автомобилях Лада Гранта и Калина, так как ЭБУ располагается под радиатором отопителя, что довольно часто подвергает его намоканию антифризом и выводит из строя. Многие владельцы данных автомобилей переносят ЭБУ под вещевой ящик.

Признаки неисправности

Как таковой неисправности у блока нет, его поломка может быть связана с поломкой какого-либо из датчиков. Например, при отказе одного из цилиндров проблема может крыться не в модуле или катушке зажигания, а в ключе расположенном в ЭБУ. Часто радиодеталь выгоревшая внутри блока может повлиять на работу какого-либо из датчиков.

Датчик положения коленчатого вала

Устанавливается на все автомобили Лада с инжекторным двигателем, служит он для определения верхней мертвой точки поршня. По его показаниям блок управления двигателем считывает показания о положении поршней в двигателе. После полученных данных ЭБУ подает сигналы на модуль зажигания и форсунки, для подачи искры и топлива в нужный момент времени и в нужную камеру сгорания определённого цилиндра.

Датчик работает по принципу электромагнитной индукции. Сам он выполняется из пластика, внутри которого расположен магнит с обмоткой. Рядом с датчиком вращается задающий диск (шкив коленчатого вала) с которого датчик считывает показания. На шкиве имеется специальная прорезь так называемый «кариес», эта прорезь, дает понять датчику, в каком положении сейчас находятся поршни и коленчатый вал.

Расположение

Находится датчик на всех Ладах в одном месте, вблизи шкива привода генератора, крепится данная деталь через болт. На корпусе масляного насоса имеется специальный отлитый кронштейн в виде уха, в него вставляется датчик и фиксируется болтом М6.

Признаки неисправности

Если датчик коленчатого вала выходит из строя, автомобиль перестает запускаться из-за отсутствующей искры и неработающих форсунок. Потеря связи с датчиком блокирует работу модуля зажигания и форсунок, возлежания попадания топлива в масло и т.п. Так же при поломке датчике двигатель может начать троить, но это случается только когда датчик еще не полностью вышел из строя.

Датчик детонации

С приходом инжекторных двигателей в Ладу, ушло в небытие регулирование угла опережения зажигания (УОЗ). Данное занятие стало выполняться автоматически, но как известно на воспламенение еще влияет и качество топлива, поэтому, чтобы не возникало больших детонаций в двигателе при использовании некачественного топлива, стал применяться датчик детонации, который улавливает малейшие детонации в двигателе и передает показания на ЭБУ, а тот в свою очередь изменяет УОЗ для обеспечения нормальной работы двигателя.

ДД представляет собой круглую деталь внутри которой имеется отверстие для крепления его к корпусу двигателя. Работает схоже с пьеза элементом, то есть при ударах вырабатывает небольшое электрическое напряжение. Когда в двигателе возникают детонации, датчик улавливает их и передает импульсы напряжения на блок управления двигателем для корректировки УОЗ.

Расположение

На всех моделях Лады в независимости от типа привода располагается данная деталь на блоке двигателя и крепится с помощью болта. Так же встречаются датчики которые сами имеют резьбу и вкручиваются в тело блока цилиндров. Более точное расположение датчика в центре между цилиндрами 2 и 3.

Признаки неисправности

При поломке датчика двигатель начинает работать в аварийном режиме, то есть ЭБУ уже не может корректировать УОЗ, а если заправиться некачественным топливом, то на автомобиле появляется неприятный стук пальцев, а работа его становится не ровной и грубой, появляются вибрации на холостом ходу и увеличивается расход топлива.

Датчик температуры охлаждающей жидкости

В карбюраторных моделях Лады датчик температуры охлаждающей жидкости применялся для включения вентилятора охлаждения, но в инжекторной версии автомобилей данный ДТОЖ начал выполнять несколько функций. Например, датчик в современных ладах участвует в корректировки топливной смеси, включении вентилятора, а так же выводит информацию о температуре ОЖ на приборную панель. Корректировка топливной смеси производится за счет температуры, то есть когда двигатель холодный ему необходима обогащенная смесь, когда же двигатель горячий, смесь нужна беднее.

Расположение

Обнаружить датчик можно под корпусом воздушного фильтра автомобилей, он находится в корпусе термостата и к нему подходит разъем с двумя проводами. Вкручивается датчик через резьбовое соединение, а между ДТОЖ и корпусом термостата расположено специальное уплотнительное кольцо.

Признаки неисправности

Когда датчик выходит из строя на автомобиле наблюдается повышенный расход топлива, а так же отсутствие прогревочных оборотов, двигатель может начать плохо запускаться. Все эти проблемы указывают на неисправность в датчике температуры.

Датчик скорости

В более старых моделях Лады, таких как ВАЗ 2108 и Классика, использовался механический привод спидометра, но с появлением инжектора в автомобилях появилось больше электроники и механический привод спидометра ушел в небытие. В настоящее время используется электронный спидометр во всех Ладах, он представляет собой деталь, работающую на принципе электромагнитной индукции, которая считывает показания с шестерней коленчатого вала и передает их на блок управления двигателем. Основной задачей датчика скорости является подсчет скорости, но в моделях с электроусилителем руля датчик скорости влияет на работу ЭУР.

Расположение

Находится датчик скорости предсказуемое на корпусе коробки переключения передач, вблизи щупа уровня масла КПП. Крепится датчик через болтовое соединение, а герметичность обеспечивается специальным маслостойким уплотнительным кольцом.

Признаки неисправности

При поломке датчика перестает работать спидометр, либо его показания становятся недостоверными. В модификациях автомобилей с ЭУР при поломке датчика усилитель руля может перестать работать.

Датчик массового расхода воздуха

Все модели Лады на инжекторы оснащены датчиком массового расхода воздуха. Он служит для подсчета воздуха подаваемого в двигатель автомобиле. Для правильной работы ДВС нужно не только наличие топлива, но еще и воздух. Топливо необходимо смешивать с бензином в нужных пропорциях для приготовления правильной топливной смеси, для этого и нужен ДМРВ, он подсчитывает количество воздуха поступившего в двигатель и передает показания на ЭБУ. Датчик является довольно прихотливым и если своевременно не менять воздушные фильтра, способен быстро выйти из строя, а стоимость его большая.

Расположение

Обнаружить датчик можно на корпусе воздушного фильтра с торца датчик крепиться через два болта, а с другой стороны к нему подключается резиновая гофра, которая фиксируется большим хомутом. К ДМРВ подходит разъем с несколькими проводами.

Признаки неисправности

При поломке датчика двигатель начинает работать неустойчиво, нарушается запуск, а так же появляется большой расход топлива. При появлении подобных неисправностей датчик можно проверить.

Датчик положения дроссельной заслонки

ДПДЗ служит для определения угла открытия заслонки внутри дросселя. Устанавливался такой датчик только на дроссельные узлы с механическим приводом, в середине 2012 году практически все автомобиле Лада начали оснащаться электронным дросселем, в котором отказались от ДПДЗ.

Датчик довольно часто выходил из строя из-за своей конструкции, так как внутри него находится резистор, по которому бегают дорожки при открытии дросселя, очень быстро эти дорожки приходили в негодность из-за быстрого стирания и сам датчик оказывался нерабочим.

Расположение

Находится ДПДЗ на дроссельном узле обнаружить его можно по подходящему проводу. Фиксируется он через два винтика, а между датчиком и корпусом ДУ расположено уплотнительное поролоновое колечко.

Признаки неисправности

При поломке ДПДЗ происходит самопроизвольное падение и поднятие оборотов в районе 500-2500 об/мин, такую проблему спутать довольно сложно она возникает довольно часто и это является важнейшим признаком неисправности ДПДЗ. Так же при его поломке возникает нестабильная работа ДВС, теряется ХХ и увеличивается расход топлива.

Регулятор холостого хода

Для регулирования оборотов холостого хода на автомобилях Лада примеряется регулятор холостого хода (РХХ). Он представляет собой электродвигатель работающий на постоянном токе и напряжении 12 В. РХХ имеет червячную передачу, которая весьма ненадежна и часто выходит из строя. Роль датчика это открытие либо закрытие канала холостого хода. РХХ участвует в работе только когда, двигатель работает на холостом ходу и закрыта заслонка дросселя. В современных Ладах начиная с 2012 году датчик перестал использоваться из-за перехода на электронный дроссельный узел.

Расположение

Находится регулятор холостого хода на корпусе дроссельного узла и крепиться двумя винтами к корпусу. Между регулятором и корпусом дроссельного узла установлено уплотнительное резиновое кольцо, которое очень часто подвергается износу и начинает пропускать воздух.

Признаки неисправности

При поломке датчика обороты холостого хода начинают падать до низких значений вплоть до остановки двигателя. Чаще всего РХХ загрязняется, после чего перестает выполнять свои функции.

Датчик кислорода

С приходом норм ЕВРО стандартов стали заботиться о выбросах в окружающую среду от автомобилей. Для этого стали применять датчики кислорода (лямбда зонд) он служит для определения концентрации углекислого газа в выхлопных газах автомобиля. Если эти параметры превышают допустимые, датчик подает сигнал на блок управления двигателем для изменения пропорций топливной смеси и снижения вредных выбросов в окружающую среду.

Расположение

В зависимости от комплектации автомобиля и года выпуска может измениться количество датчиков кислорода. В более старых моделях используется один датчик кислорода на выпускном коллекторе. В автомобилях с катализатором используется два датчика кислорода до катализатора и после.

Признаки неисправности

Когда лямбда зонд выходит из строя автомобиль начинает расходовать больше топлива, теряется его мощность и прежняя динамика. Довольно часто поломка в ДК может влиять на работу всего двигателя на холостом ходу может появиться детонация и сильные вибрации.

Датчик распредвала

Датчик положения распределительного вала устанавливается на автомобиле с 16-ти клапанным двигателем. Он необходим для пофазного впрыска топлива в камеру сгорания двигателя. Такой впрыск топлива позволяет добиться большей мощности при меньшем расходе топлива. Если датчик выходит из строя двигатель переходит в режим параллельного впрыска топлива.

Расположение

Находится датчик распределительного вала вблизи шкива впускного распределительного вала. Он считывает показания с вращения распредвала, а именно с его шкива на котором имеется специальный задающий диск.

Признаки неисправности

Как правило, поломку данного датчика довольно сложно заметить, потому что, каких-либо важных функций этот датчик не несет, а лишь помогает экономить топливо. Если уж и выйдет датчик распредвала из строя, увеличится расход топлива

Источник

Электронная система автомобиля состоит из блоков управления и многочисленных датчиков, объединенных в единую сеть разветвленной паутиной проводки. Взаимодействие между элементами этой цепи осуществляется посредством электрических сигналов с определенными параметрами. Работа всех деталей характеризуется механической энергией. Преобразование механической энергии движения в электронные импульсы, с последующей передачей на ЭБУ – это задача датчиков.

Содержание статьи

  • 1 Как работают датчики двигателя и как их проверять
  • 2 Схема включения датчиков в электронную систему ЭБУ
  • 3 Разновидности датчиков двигателя
  • 4 Тестирование датчиков двигателя
  • 5 Датчик температуры двигателя
  • 6 Кислородный датчик – лямбда зонд
  • 7 Датчик коленвала

Как работают датчики двигателя и как их проверять

Преобразовываются в импульсы параметры таких физических явлений, как:

  • Температура различных жидкостей, газов и агрегатов
  • Давление в различных средах и системах
  • Скорость, направление и количество валовых оборотов
  • Концентрация веществ во всевозможных смесях (жидкости и газов)
  • Количественные и объемные параметры воздушного потока
  • Относительное пространственное положение подвижных деталей
  • Вибрационные колебания и другие факторыКак работает датчик двигателя

Допустим, нужно протестировать какой-то датчик. С ЭБУ он получает напряжение в 5В. Подключив диагностическое оборудование (автосканеры и мотортестеры) к проводам соединения датчика с блоком, можно видеть «картину» передаваемого сигнала. Сканеры позволяют оценить качество сигналов в общих чертах, к тому же, они не применимы к старым моделям автомобилей. Мотортестер же, дает точное понятие о мельчайших деталях, хотя требуется больше труда в его использовании.

Схема включения датчиков в электронную систему ЭБУ

Эффективное проведение диагностики двигателя, напрямую зависит от понимания особенностей включения его датчиков в электронную цепь системы.

Общий провод электрической цепи автомобиля («масса») объединяет кузов и мотор, и подключается к отрицательному электроду аккумулятора. Так вот, к этому проводу соединяется и блок, и датчик.

Если соединить датчик в произвольной точке этого провода (соответственно, другой конец соединить с ЭБУ), то в зону действия датчика попадает интервал общей сети, где одновременно с его слабым напряжением, проходят сигналы сильного напряжения (например, стеклоподъемников). Это создает большие помехи, приводя к искажению переданной информации.Схема включения датчиков в ЭБУ

Выход один – соединение прямо к выходу «массы» ЭБУ, который уже имеет соединение с «массой» кузова. Из всех датчиков провода входят в блок, там соединяются с «массой». Тем самым устраняются помехи на пути передачи сигнала.

Проводка датчиков, ответственных за наиболее точную информацию (к примеру, ДПДЗ), снабжена экраном, в виде фольговой оплетки, предназначенным дополнительно глушить возможные помехи.

Разновидности датчиков двигателя

Различие в основных принципах работы, дает нам право, классифицировать датчики следующим образом:

  1. Потенциометры или датчики положения

Конструкция состоит из резистивной дугообразной дорожки, с одной стороны соединенной с «массой», а другой получает питание. Если на этот выход подать напряжение 12В, то на противоположном выходе создается нулевое напряжение. Скользящий по дуге, ползунок снимает показания напряжения на всем участке. По мере прохождения от одного конца к другому, напряжение на нем меняется то 12В до 0. Эти изменения напряжения и есть сигналы, передаваемые в ЭБУ.Виды датчиков диагностики двигателя

  1. Пьезоэлектрические
  2. Терморезистивные или температурные датчики. Это полупроводниковые резисторы, у которых изменение температуры, приводит к изменению напряжения в полупроводниках. Эти перепады фиксируются в ЭБУ, на основании чего регулируется работа систем.
  3. Термоанемометрические или датчики давления

Тестирование датчиков двигателя

Датчик положения дроссельной заслонки – яркий представитель потенциометрического типа устройства. Он вживлен в ось заслонки. Надавливая на педаль газа, водитель заставляет заслонки менять свое положение, полностью раскрываются. Изменения положения, ведут к изменению напряжения в ползунке датчика. Сведения об этом, немедленно передаются в ЭБУ, который начинает регуляцию топливной подачи форсункой.Тестирование датчиков двигателя

Все изменения должны протекать плавно, без рывков и значительных скачков. Наиболее наглядно можно увидеть картину происходящего на осциллограмме. Подключается осциллограф, и анализируется график. Провалы, резкие скачки, «пилообразный» характер осциллограммы, свидетельствует о неисправности датчика. Простой вольтметр не в состоянии зафиксировать миллисекундные скачки напряжения. Мультиметром можно замерять предельные показания напряжения.

Проверку сканером осуществляют по стандартной схеме: подключают его к разъему, в «потоке данных» найти показания напряжения в этом датчике. Снимать все показания, медленно передвигая заслонки. По плавности нарастания ( без скачков и провалов) напряжения, можно судить об исправности датчика.

Исправность ДПДЗ проверяется, когда:

– получив оповещение об ошибке

– сбои двигателя – затрудненный запуск, нестабильные обороты

– повышенное расходование топлива, усиление детонации, перебойный характер работы мотора

– когда требуется настройка датчиков определенных фирм – производителей

Датчик температуры двигателя

Датчик ОЖ – резисторный прибор, где изменение температуры приводит к колебаниям его электрических характеристик (сопротивления и напряжения). Он устанавливается в просвете трубки ОС и погружен в ОЖ. С остыванием жидкости, увеличивается сопротивление прибора (100Ом при t= -44°С). ЭБУ подает стабилизационное напряжение, измеряет степень ее понижения – на прогретом двигателе его показатели низкие, холодный мотор выдает высокое напряжение. Так ЭБУ определяет текущую t ОЖ, необходимую во многих регуляционных процессах.Датчик температуры двигателя

Обрыв или отход контакта, воспринимается ЭБУ в форме понижения температуры ОЖ. Это свидетельствует об увеличении доли горючего в смеси. Это действительно так – коррекция происходит в сторону увеличения содержания бензина в смеси.

Всякие механические повреждения или разомкнутая цепь, воспринимается ЭБУ в виде оповещения о повышение температуры ОЖ, что оборачивается уменьшением доли топлива в смеси, выдачей расшифровки « работа на обедненной смеси».

Признаки неисправности:

– индикатор не панели

– соответствующая ошибка и ее код

– повышение «аппетита» двигателя, токсичность выхлопов

– затрудненный запуск, самопроизвольная остановка

Перед началом диагностики, нужно «привести в норму» охлаждающую систему. Она должна быть заправлена, крышку следует открывать после остывания. Датчик утоплен в жидкости, соблюдена герметичность, чтобы избыток воздуха не создавал помехи . Сама ОЖ правильно разбавлена. Проверить работу вентилятора и термостата.

Самую удобную и точную проверку можно провести сканером Bosch KTS, имеющий большой выбор адаптеров и аппарат мультиплекора. Универсальный диагностический сканер способен тестировать 145 систем и 17000 блоков. Поддерживают протоколы ISO, SAE, OBD. Имеет функции:

– считка кодов и вывод расшифровки

– сброс памяти

– сброс интервалов ТО

– текущие параметры и их графики

– опознание блоков

– базовые опции

Кислородный датчик – лямбда зонд

Протокол OBD предписывает постоянное значение коэффициент λ=1, что соответствует стехиометрической концентрации топливной смеси. Это экономит горючее и снижает токсичность выбросов.

Датчик реагирует на давление кислорода в выхлопных газах. При определенных сбоях системы двигателя, когда кислород не в полном объеме расходуется при сгорании топлива, он поступает в выпускной коллектор. Тогда посылаются сигналы в ЭБУ, которые тот расшифровывает как обедненная смесь. Если в коллекторе нарушена герметичность, то к такому же результату приведет реакция датчика на, проникший туда, кислород.Кислородный датчик двигателя

Причиной искажения сигналов может стать и «отравление» датчика, вредными веществами (свинца и кремния) коллектора. Также, механические повреждения или плохое заземление.

Тестирование можно провести, все тем же, сканером Bosch KTS.

  • Соединить прибор через разъем
  • Прогреть датчик и двигатель, поднять обороты до 3 тыс
  • Проверить замкнутость цепи
  • Снять осциллограмму
  • Проанализировать ее

Когда датчик исправен, график плавно колеблется в интервале  4 – 19 Гц. А напряжение  0.15 – 0.4В – нижний предел, 0.5 – 0.8В верхний предел.

Ко всему вышеизложенному, остается добавить – важность корректного функционирования датчиков  двигателя, как и всех остальных, трудно переоценить. Без этого запускается цепной процесс разладов всех систем автомобиля.

Датчик коленвала

Датчик положения коленвала – один из важнейших частей в электронной системе управления двигателем. Датчик положения коленвала сообщает блоку управления когда необходимо произвести искру и подать топливо в нужный цилиндр. Во веря вращения коленвала и установленного на нем диска с зубьями, датчик реагирует на зубья, вращающиеся рядом с датчиком.Датчик коленчатого вала генерирует импульсы тока, которые считывает ЭБУ и решает в какой из поршней в каком цилиндре достиг верхней точки. Неисправный датчик коленвала перестает подавать сигналы блоку управления, это приводит к тому, что информации о положении поршней не поступает и двигатель глохнет.
Датчик устроен достаточно просто. Внутри он полностью заполнен компайндом, что делает его не пригодным к ремонту. Обычно датчик коленвала выходит из строя из-за реского скачка напряжения, происходит замыкание и нарушается сигнал импульсов, по которым ЭБУ считывает информацию. Со временем межвитковое замыкание нарастает и датчик выходит из строя.В первом случае двигатель будет работать с перебоями, а в дальнейшем попросту заглохнет. Бывают случаи, что двигатель работает до тех пор пока вы не заглушили машину, а после мотор уже не заведется.
Причин нестабильной работы датчика коленвала можем быть несколько:

1. Механическое повреждение датчика, что происходит крайне редко
2. Сломано одно из зубьев, по которым считывается информация
3. Не жесткая посадка шкива на коленвале, шкив расшатан, что на больших оборотах дает нестабильную работу двигателя
4. Проверьте свечи, если нет искры, а на катушке зажигания есть бортовое напряжение при включенном зажигании, датчик неисправен.
5. При врщении стартером коленвала, на форсунки подается напряжение +12В, если напряжения нет, датчик коленвала вышел из строя.
6. Датчик забит маслом и грязью – проведите визуальный осмотр.
7. Окислены клемы, необходимо их очистить и попытаться завести двигатель.
8. Обрыв провода – прозвоните проводку тестером.

Проверить датчик коленвала на работоспособность можно несколькими способами:

1. Проверить сопротивление, отсоеденив клему от датчика. У разных типов датчика оно отличается и должно быть в пределать 600-900ОМ. Сопротивление необходимо измерять при температуре 20-25 град.
2. Второй способ, открутить датчик и не снимая клемы подключить вольтметр к проводам, для этого проткните изоляцию тонкой иглой. Проведите металическим предметом возле датчика, если на вольтметре будет скачен напряжения, датчик исправен.

Здесь описаны датчики и исполнительные механизмы применяемые в ЭСУД. Кратко описан принцип действия и методы проверки, без применения спец. и диагностического оборудования, если это возможно. Доступные каждому, кто имеет мультиметр иили БК.
Датчики
1. ДМРВ На автомобилях семейства ВАЗ-2110 устанавливаются датчики массового расхода воздуха термоанемометрического типа.

Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха.Важно, чтоб датчик оставался в чистоте, так-как загрязнение вызовет искажение показаний датчика.Так-же он требователен к качеству фильтрации всасываемого воздуха, так-как попавшая пыль, пролетая через датчик, режет плёнку чувствительного элемента. Что приводит к безвозвратному выходу датчика из строя.
Устанавливается датчик здесь…

Итак о проверке…
Проверка заключается в измерении напряжения покоя датчика, то-есть напряжения, которое выдаёт датчик, при включённом зажигании, но не запущенном двигателе. Измерение можно проводить как с помощью БК, так и с помощью обычного мультиметра. Лучше конечно если мультиметр будет не самый дешевый и китайский.
Если установлен БК, нужно посмотреть параметры каналов АЦП(аналого-цифрового преобразователя).Для проверки ДМРВ мультиметром, аккуратно прокалывая проводку разъёма датчика, измеряем напряжение между 3(масса ДМРВ) и 5(сигнал) контактами.

Показания должны быть 0,996В-для нового, <1,07В для уже «поплывшего» и >1,07-для убитого датчика.

2. Датчик кислорода(ДК) или Лямбда-Зонд.

Чувствительный элемент датчика кислорода находится в потоке отработавших газов.При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК представляет собой быстро изменяющееся напряжение, колеблющееся между 500 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии(идиальной пропорции воздух-топливо, 14,7кг воздуха на 1 кг топлива), сам ДК не способен генерировать какое-либо переменное напряжение, а лишь изменяет опроное. Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом.
Устанавливается датчик либо так…

либо так…

( коллектор А-21124;Коллектор В-21114)
На двигателях с экологическими нормами Евро-3 устанавливаются два ДК, один до катализатора, другой после.Второй датчик служит для контроля работы катализатора…

Метод проверки заключается в том, что при прогретом двигателе, с помощью мультиметра(лучше аналогового-стрелочного) наблюдается изменение напряжения.Если изменений нет, при исправных цепях и прогреве датчика, а напряжение лежит выше или ниже указаного предела, то датчик «отравлен» и подлежит замене.Так-же следует учесть, что многие дешевые мультиметры, обладают большой инерционностью и не позволят произвести точное измерение из-за часто меняющегося напряжения(аналоговый(стрелочный) мультиметр сдесь выигрывает).Но изменение контролировать удастся…
3. Датчик температуры охлаждающей жидкости(ДТОЖ)
Датчик температуры охлаждающей жидкости представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается.

Проверка производится с применением градусника.Нагревая и охлаждая датчик, например в воде, измеряем сопротивление датчика и сравниваем с данными в таблице, приведённой ниже и показаниями контрольного градусника.
Приблизительная зависимость сопротивления от температуры:
Температура грС—Сопротивление Ом
100—177
90—241
80—332
70—467
60—667
50—973
45—1188
40—1459
30—2238
25—2796
20—3520
15—4450
10—5670
5—7280
0—9420
-5—12300
-10—16180
-15—21450
-20—28680
-30—52700
-40—100700
4.Датчик положения дроссельной заслонки(ДПДЗ)

Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой.С третьего вывода потенциометра(от ползунка) идёт выходной сигнал к контроллеру.Когда дроссельная заслонка поворачивается(от воздействия на педаль управления), изменяется напряжение на выходе датчика.При закрытой дроссельной заслонки оно ниже 0.7 В.Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В.Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки(т.е. по вашему желанию).Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.
К сожалению без применения осциллографа не возможно определить состояние датчика, но можно хотя-бы проверить функционирование датчика.
При плавном нажатии на педаль газа, на БК должно меняться процентное открытие заслонки(0% открытия-1%-2%-3% и так далее), а при измерении напряжения на разъёме датчика,

между контактами 1(масса датчика) и 2(сигнал ДПДЗ), напряжение должно меняться плавно без скачков.Если на БК происходит перескакивание % открытия(1%-2%-8%-3%), а на мультиметре просходят скачки напряжения, стоит задуматься о его замене…
5.Датчик положения коленчатого вала(ДПКВ)
ДПКВ, самый важный датчик ЭСУД.Система управления может функционировать без любого датчика, кроме ДПКВ.Если он неисправен двигатель не запустится.

ДПКВ подаёт в контроллер сигнал частоты вращения и положения коленчатого вала.Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.На базе этих импульсов контроллер управляет форсунками и системой зажигания.

ДПКВ установлен на крышке масляного насоса

на расстоянии около 1+0,4мм от задающего диска (шкива, репера) коленчатого вала.

Шкив коленчатого вала имеет 58 зубцов расположенных по окружности.Зубцы равноудалены и расположены через 6°.Для генерирования «импульса синхронизации» два зуба на шкиве отсутствуют.При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения.По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания.Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер.Датчик ПКВ — полярный прибор — при нарушении проводки следует подключать соблюдая полярность.В «обратном» включении двигатель не заведется.
Доступный метод проверки заключается в измерении сопротивления обмотки датчика, оно должно лежать в пределах 550-750 Ом.Если есть отклонения, следует заменить его.
Так-же на датчике не должно быть примагниченных частиц металла, грязи и масла.
И личный совет:«Возите с собой запасной датчик».
6. Датчик скорости автомобиля(ДС)

Принцип действия датчика скорости основан на эффекте Холла.Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс.Все датчики 6-ти импульсные, то есть выдают 6 импульсов за один оборот своей оси.Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в последних системах управления).
Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и разборка коробки передач неизбежна.
К сожалению, произвести проверку ДС, без спец. средств не возможно.С помощью БК и штатного спидометра можно лишь контролировать его работу.Не должно быть сильных скачков скорости при движении.Скачки могут быть вызваны как самим неисправным датчиком, так и механизмом его привода.
7.Датчик фаз(ДФ)

Датчик фаз (ДФ) раньше применяется только на 16-ти клапанном двигателе 2112 и 8-кл. двигателе 2111 с нормами токсичности Евро-3 (экспортные версии автомобилей), в которых установлена система последовательного распределённого впрыска топлива или фазированного впрыска.С конца 2004 — начало 2005 гг. и до снятия с производства семейства ВАЗ 2110, в связи с ужесточением норм токсичности ДФ устанавливались на подавляющее большинство новых автомобилей с двигателями 2111, 2112, 21114, 21124 с блоками управления впрыском Bosch M7.9.7 и Январь 7.2.
Датчик фаз устанавливается на двигателе ВАЗ-2112 в верхней части головки блока цилиндров за шкивом впускного распредвала.На шкиве впускного распредвала расположен задающий диск с прорезью.Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра.Контроллер посылает на датчик фаз опорное напряжение 12В.Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0(при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ(при прохождении через датчик кромки задающего диска).Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов.
Проверку мультиметром произвести не удастся, нужен осциллограф.Так-же как и на ДПКВ, на ДФ не должно быть металлических частиц и сильных загрязнений за исключением масла.
ДФ на двигателе 2111 устанавливается так:

А на двигателе 2112 вот здесь:

8. Датчик детонации(ДД)
Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке цилиндров.Конструктивно датчик представляет собой пьезокерамическую пластину в корпусе.Существует две разновидности ДД — резонансные и более современные широкополосные.

В настоящее время резонансные ДД не устанавливаются серийно.
ДД, при работе двигателя, за счёт пьезо элемента генерирует импульсы, которые ЭБУ отфильтровывает по заложенному в нём алгоритму.При возникновении детонации, ЭБУ фиксирует сигналы с ДД и «заваливает» УОЗ, чтоб предупредить воздейсвие детонационных явлений на детали двигателя.
Проверка датчика на работоспособность производится путём подключении к выводам датчика мультиметра в режиме измерения милливольт и легкими постукиваниями по сердцевине датчика.При этом регистрируются скачки напряжения.
Обычно ДД крепится на блоке цилиндров болтом, но проведённые эксперименты говорят о том, что для крепления датчика лучше использовать шпильку.Так шумы лучше передаются в датчик.Момент затяжки датчика 1.6-2.2 кг.
9. Датчик неровной дороги(ДНД)
Датчик неровной дороги,

работает на основе пьезо-эффекта.При прохождении автомобилем неровностей генерирует импульсы и посылает их в ЭБУ.Устанавливается на автомобили с экологическими нормами Е-3 и выше.Суть его работы в том, что при прохождении автомобилем неровностей образуется неравномерность вращения коленчатого вала автомобиля, которые могут регистрироваться ЭБУ как пропуски воспламенения.Эбу отключит подачу топлива в цилиндр, который якобы в тот момент имел пропуск воспламенения, и двигатель «затроит».Чтоб не допустить ложных срабатываний системы диагностики пропусков, в ЭСУД был введён этот датчик.И эбу сверяя сигнал с ДНД и неравномерность вращения делает правильный вывод, произошел пропуск или нет.Датчик устанавливается на правой(по ходу автомобиля) стойке и прикручивается под гайку крепления верхней опоры.

Элементы систем впрыска

Материал обзорный, 2003 – 2006 г. 
ДАТЧИК КИСЛОРОДА (Лямбда-Зонд)

Элементы систем впрыскаЧувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение.

Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).

Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ «видит» только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ «видит» изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.

Элементы систем впрыска

График выходного сигнала Датчика Кислорода

Элементы систем впрыска

Элементы систем впрыска

Датчик кислорода, применяемый в серийных системах впрыска, не способен регистрировать изменения состава смеси, заметно отличающиеся от 14,7:1, в силу того, что линейный участок его характеристики очень «узкий» (см. график выше по тексту). За этими пределами лямбда – зонд почти не меняет напряжение, то есть не регистрирует изменения состава ОГ.

На автомобилях ВАЗ прежних модификаций (1,5 л.) в системах Евро‑2 применялся датчик BOSCH 0 258 005 133. В системах Евро‑3 он применялся в качестве первого ДК, устанавливаемого до катализатора. Вторым ДК, для контроля содержания вредных выбросов после катализатора устанавливается датчик с «обратным» разъемом (хотя, в встречаются и авто с одинаковыми). В новых автомобилях 1,5/1,6 л., с системой впрыска Bosch M7.9.7 и Январь 7.2, выпускаемых с октября 2004 г. устанавливается датчик BOSCH 0 258 006 537. Внешние отличия смотрите на фотографиях. Новый ДК имеет керамический нагреватель, что позволяет существенно снизить потребляемый им ток и уменьшить время прогрева.

Для замены вышедших из строя оригинальных лямбда-зондов фирма Bosch выпускает специальную серию из 7 универсальных датчиков, которые перекрывают практически весь диапазон применяемых штатно датчиков. Информация по ним ЗДЕСЬ.

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР

В автомобилях с обратной связью по ДК (нормы токсичности Евро-II, Евро-III и выше) применяется нейтрализатор вредных выбросов в выхлопных газах. Применение катализаторов на системах без ОС возможно, при грамотной настройке и полностью исправном двигателе, т.к наиболее эффективно работает только на смесях, близких к стихеометрическим (14,7:1), при любом отклонении от которых эффективность его значительно снижается.

Спорную по некоторым утверждениям, но, безусловно, интересную статью посвященную катализаторам читайте ЗДЕСЬ.

В автомобилях прошлых лет выпуска применялся керамический нейтрализатор, который позже заменил металлический. В последних моделях 16V двигатели 1,6 могут оснащаться так называемым катколлектором. Следует внимательно относиться к этому устройству – катализатор (или катколлектор) наиболее эффективно работают при очень высокой температуре и при пропусках воспламенения в каком-либо цилиндре бензин будет воспламеняться в катализаторе (катколлекторе), выделяя огромную тепловую энергию – в считанные минуты он раскаляется добела, что может стать причиной нарушения электропроводки и даже возгорания автомобиля. Именно по этой причине не рекомендуется отключать в прошивках диагностику пропусков воспламенения. Попадание несгоревшего топлива в катколлектор способно в считанные секунды разрушить его.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА

Существует довольно много различных типов датчиков массового расхода воздуха (ДМРВ): механические (флюгерного типа), ультразвуковые, термоанемометрические и т.д.

В данном разделе мы рассмотрим устройство термоанемометрического датчика HFM‑5 производства Bosch, устанавливаемого на автомобили ВАЗ. Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха. Такая конструкция получила название Hot Film (HFM), к ее достоинствам можно отнести высокую точность измерения и способность регистрировать обратный поток воздуха, к недостаткам – низкую надежность в условиях загрязнения и попадания влаги.

В старых системах (ЭБУ Январь‑4 и GM-ISFI-2S) применялись другие термоанемометрические ДМРВ, чувствительные элементы которых были выполнены в виде нитей. Такие датчики получили название Hot Wire MAF Sensor. Выходной сигнал этих датчиков был частотный, то есть в зависимости от расхода воздуха менялось не напряжение, а частота выходных импульсов. Датчики были менее точны, не позволяли регистрировать обратный поток, но эти недостатки перекрывала очень высокая надежность.

ДМРВ – очень важный датчик в любой системе управления. На основе его сигнала производится расчет циклового наполнение цилиндра, пересчитываемого в конечном итоге в длительность импульса открытия форсунок.

На автомобили ВАЗ устанавливались несколько типов датчиков: GM, BOSCH, SIEMENS и Российский. В 1999 – 2004 гг. на конвейере ВАЗа устанавливались два типа датчиков 0 280 218 – 037 и 0 280 218 – 004. Эти датчики выдают разные параметры выходного напряжения (тарировки) на одинаковом расходе воздуха и взаимозамена (вернее, замена 004 на 037, как правило) возможна только с заменой тарировочных таблиц в прошивке. То же касается и нового датчика 116, устанавливаемого серийно с начала 2005 г.

В соответствии с действующей документацией, на ВАЗе разрешены к применению три модификации датчика расхода воздуха HFM5 фирмы BOSCH.  Под каталогом ВАЗ понимается каталоги запасных частей для конкретных автомобилей. К сожалению на датчиках присутствуют только последние три цифры «Бошевского» каталожного номера, а ВАЗовский № отсутствует.

Модель № Bosch № ВАЗ
HFM5‑4.7 0 280 212 004 21083 – 1130010-01
HFM5‑4.7 0 280 212 037 21083 – 1130010-10
HFM5-CL 0 280 212 116 21083 – 1130003-20

Исторически первым был введен датчик 004 в проектах с калибровками M1V13O54,M1V13R59, M1V05F05 и M7V03E65 (а так же J5V05F16, первая неофициальная версия Январь 5.1). Первые два проекта легко определяются по внешнему виду т.к. они без нейтрализатора и в них использовался резонансный датчик детонации. Затем эти два первых проекта были прекращены в производстве и все дальнейшие проекты (с калибровками последующих серий) стали укомплектовываться датчиками 037. Одновременно с прекращением двух вышеназванных проектов проект M7V03E65 также стал комплектоваться 037 датчиком. Модификация 037 отличается от 004 доработкой внутреннего воздушного канала датчика с целью убрать пульсации воздушного потока, которые возникают в 004 даже при ламинарном воздушном потоке в впускном коллекторе. При этом характеристика 037 сместилась по сравнению с 004. Считается, что при наличии обратной связи по кислороду эти отличия компенсируются,  именно поэтому калибровка проекта M7V03E65 при смене датчика не была изменена.

С октября 2004 г. основным датчиком является 116. Модификация 116 предназначена для проектов с контроллерами нового поколения Bosch М7.9.7 и его отечественными аналогами – Январь 7.2, параллельное производство которых начато фирмами Итэлма и Автэл. Тарировка датчика и его конструкция отличаются от 004 и 037.

Датчик поставляется только в сборе, с кодом и маркируется зеленым кругом. Сам элемент имеет измененную конструкцию. В 2006 г. для усложнения кражи или подмены элементов ДМРВ для закрепления чувствительного элемента в корпусе применяются специальные однонаправленные болты.

На часть автомобилей классической компоновки совместно с ЭБУ Январь 7.2 применялись датчики Siemens-VDO (5WK97014. AVTEL):

Они отличаются тарировкой (от нуля вольт) и схемой подключения.  Подключение датчика – 1 – 12вольт; 2 – 5 вольт; 3 – выход сигнала расхода воздуха; 4 – выход сигнала температуры воздуха; 5 – общий минус.

ИНФОРМАЦИОННОЕ ПИСЬМО № 49 – 2002‑И По замене датчиков массового расхода воздуха ОАО «АВТОВАЗ» Дирекция по организации поставок автомобилей, запасных частей и техническому обслуживанию автомобилей ОАО «АВТОВАЗ». Инженерно-технический центр «АвтоВАЗтехобслуживание».

Расшифровка даты выпуска ДМРВ до 2013 г.

Принцип работы

Элементы систем впрыскаВысокая стоимость датчиков массового расхода воздуха (ДМРВ) обусловлена его высокой технологической сложностью. На фото слева – контроллер обработки информации с датчиков температуры, находящийся внутри ДМРВ

*Пытливые умы могут самостоятельно рассмотреть и проанализировать спектрограмму датчика. При сильном увеличении (30000 раз) отчетливо можно увидеть «полосы» нагревательного резистора и датчиков температуры, содержание платины в которых доходит до 38%. Скачать для ознакомления полный спектральный анализ (1,4 Мб).

А теперь – о фальсификации. Этот материал можно было бы положить в раздел «Приколы», если б не было так грустно. Уже несколько раз мелькала информация о «муляжах» ДМРВ и вот документальное подтверждение, присланное PSP – уже второй случай обнаружения на новых автомобилях такого муляжа.  Смотрите – ФОТО 1, ФОТО 2, ФОТО 3.  Надеемся, что АвтоВАЗ не имеет к этому никакого отношения и ДМРВ покинули совершенно новые авто по вине расхитителей. Во всяком случае, необходимо пересмотреть охрану автомобилей по пути от производителя к потребителю.

Приобрести в «фирменном» магазине отмытый датчик в настоящее время стало довольно трудно, а вот на товарные авто вовсю ставятся «облагороженные» датчики, скупаемые у населения по 200 – 300 рублей. Датчики производства Саратова упаковываются в коробки по 12 шт, каждый датчик в пакете, с паспортом. Датчики производства «Германии» (или, что скорее всего, филиалом в Турции) упакованы в желтую фирменную коробку.

Бюллетель BOSCH о контрафактных датчиках массового расхода воздуха.

Описание принципа работы пленочного частотного ДМРВ (учебное пособие)

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ

Датчик температуры охлаждающей жидкости (ДТОЖ) представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается. Высокая температура вызывает низкое сопротивление (70 Ом при 130град.) датчика, а низкая температура охлаждающей жидкости – высокое сопротивление (100800 Ом при ‑40град.).При замене датчика не забудьте отвинтить крышку-клапан с расширительного бачка системы охлаждения чтобы сбросить давление. Зависимость сопротивления датчика температуры охлаждающей жидкости от температуры (ориентировочно) .

температура – сопротивление Ом

100 – 177*90 – 241*80 – 332*70 – 467*60 – 667*50 – 973*45 – 1188*40 – 1459*30 – 2238*25 – 2796
20 – 3520*15 – 4450*10 – 5670*5 – 7280*0 – 9420*-5 – 12300*-10 – 16180*-15 – 21450*-20 – 28680 ‑30 – 52700*-40 – 100700

Датчик практически не ломается, но бывает, врёт. Довольно часто перетираются провода у основании разъёма так, что даже припаять не к чему.  При замене датчика открутите пробку расширительного бачка, что бы снять внутреннее давление в системе охлаждения.

ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ

Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик (ДПДЗ)представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идёт выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонки оно ниже 0.7 В. Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В. Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер самостоятельно определяет минимальное напряжение датчика и принимает его за нулевую отметку.

Самый ненадёжный элемент в системе, если он отечественный. Очень часто его приходится менять  до 20-ти тыс., хотя иногда датчики «ходят» до 80 тыс. км. Были случаи, когда датчик отказывал через 200 км. пробега нового автомобиля. Датчик крайне тяжело менять без специального качественного инструмента. Дело в том, что нижний винт крепления неудобно отворачивать обычной отвёрткой, да ещё при закручивании на заводе винты сажают на герметик, который так их прихватывает, что при отворачивании нередко срывает шляпку винта. В таких случаях  для замены датчика необходимо снимать весь дроссельный узел в сборе. В худшем варианте приходится просто выламывать датчик, но только в том случае если мы уверены что это 100% неисправный датчик. Разумеется предпочтительнее ставить импортный датчик дроссельной заслонки, хоть он и дороже в 3 раза. Он практически «не убиваемый».

С середины 2003 г. в продаже появились БЕСКОНТАКТНЫЕ датчики нового образца, производства Курского завода «СчетМаш». ТУ 4591 – 034-00225331 – 2002. Фото фирменной упаковки. Фото упаковки бесконтактных датчиков «Астро».

И – для любопытных – фотографии «вскрытого» ДПДЗ – фото 1  фото 2  фото 3. На фотографиях отлично виден датчик Холла и магнит рядом с ним.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА

ДПКВ подаёт в контроллер сигнал частоты вращения и положения коленчатого вала. Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала. На базе этих импульсов контроллер управляет форсунками и системой зажигания. ДПКВ установлен на крышке масляного насоса на расстоянии около 1+0,4мм от задающего диска (шкива) коленчатого вала. Шкив коленчатого вала имеет 58 зубцов расположенных по окружности. Зубцы равноудалены и расположены через 6°. Для генерирования «импульса синхронизации» два зуба на шкиве отсутствуют. При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения. По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания. Провод ДПКВ защищён от помех экраном, замкнутым на массу через контроллер. ДПКВ – самый главный из всех датчиков, при неисправности которого двигатель работать не будет. Этот датчик рекомендуется  всегда возить с собой. Диагностика ДПКВ описана здесь. Датчик ПКВ – полярный прибор – при нарушении проводки следует подключать соблюдая полярность. В «обратном» включении двигатель не заведется. Устройство датчика.

ДАТЧИК СКОРОСТИ

Принцип действия датчика скорости (ДС) основан на эффекте Холла. Датчик выдаёт на контроллер импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колёс. Датчики скорости различаются по присоединительным разъёмам к колодке жгута. Квадратный разъём применяется в системах БОШ. Датчик с круглым разъёмом применяется в системах Январь 4 и GM. Все датчики 6‑ти импульсные, то есть выдают 6 импульсов за один оборот своей оси. 10-ти импульсный датчик применяется для маршрутных компьютеров карбюраторных «Самар». Сигнал датчика скорости используется системой управления для определения порогов отключения подачи топлива, а также для электронного ограничения скорости автомобиля (в новых системах управления).

Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и – полная разборка коробки передач неизбежна.

ДАТЧИК ФАЗ

Датчик фаз (ДФ) раньше применяется только на 16-ти клапанном двигателе 2112 и 8‑кл. двигателе 2111 с нормами токсичности Евро‑3 (экспортные версии автомобилей), в которых установлена система последовательного распределённого впрыска топлива или фазированного впрыска. Датчик фаз устанавливается на двигателе ВАЗ-2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов.

Приведенная выше информация была написана по состоянию на 2002‑й год. В настоящее время (конец 2004 – начало 2005 гг.) в связи с ужесточением норм токсичности ДФ устанавливаются на подавляющее большинство новых автомобилей с двигателями 2111, 2112, 21114, 21124 с блоками управления впрыском Bosch M7.9.7 и Январь 7.2. Фото датчиков фазы 2111 и 2112

На автомобилях Нива с новыми блоками управления Bosch M7.9.7 в верхней части ГБЦ, на приливе устанавливается датчик 2111. Фото здесь.

РЕГУЛЯТОР ХОЛОСТОГО ХОДА

Регулятор холостого хода (РХХ) служит для поддержания установленных оборотов двигателя на холостом ходу за счет изменения количества воздуха, подаваемого в двигатель при закрытом дросселе. РХХ расположен на дроссельном патрубке и представляет собой шаговый двигатель анкерного типа с двумя обмотками. При подаче импульса на одну из них игла делает один шаг вперед, на другую – шаг назад. Через червячную передачу вращательное движение шагового двигателя преобразуется в поступательное движение штока. Конусная часть штока располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует «0» шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки. При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла. Полностью открытое положение клапана соответствует перемещению штока на 255 шагов. На прогретом двигателе контроллер, управляя перемещением штока, поддерживает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки.
В системах «Микас» чаще применяется несколько другое название – Регулятор Добавочного Воздуха (РДВ). РДВ имеет другую конструкцию: вместо шагового двигателя применен моментный двигатель, который поворачивает запорный элемент на определенный угол, пропорциональный напряжению.

Управление двигателем производит Электронный Блок Управления (ЭБУ). Устройство.

Более подробно и детально с принципом работы, диагностики и тестирования РХХ можно ознакомиться в курсовой работе Д. Артемова (Новочеркасск). СКАЧАТЬ (pdf, 515 Kb).

ДАТЧИК ДЕТОНАЦИИ

Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке цилиндров. Конструктивно датчик представляет собой пьезокерамическую пластину в корпусе. Существует две разновидности ДД – резонансные и более современные широкополосные. В резонансных ДД первичная фильтрация спектра сигнала осуществляется внутри датчика и зависит от его конструкции, поэтому, для различных типов двигателей применяют разные датчики, отличающиеся резонансной частотой. Широкополосные датчики, как следует из их названия, имеют ровную характеристику в диапазоне детонационных шумов, а фильтрация сигнала осуществляется в ЭБУ. В настоящее время резонансные ДД не устанавливаются серийно.

РЕГУЛЯТОР ДАВЛЕНИЯ ТОПЛИВА

Регулятор давления топлива (РДТ) служит для регулировки давления топлива в рампе в зависимости от нагрузки и режима работы двигателя. РД расположен на рампе форсунок и для своей работы использует разряжение в ресивере. Существует несколько разновидностей РД. Регулятор представляет собой мембранный перепускной клапан. На диафрагму регулятора с одной стороны действует давление топлива, а с другой – давление пружины регулятора и давление (разрежение) во впускной трубе. Регулятор поддерживает постоянный перепад давления (по отношению к давлению во впускной трубе) на форсунках. При увеличении нагрузки на двигатель (при росте давления во впускном трубопроводе) регулятор увеличивает давление топлива в топливной рампе, при уменьшении нагрузки – регулятор уменьшает давление топлива (на самом деле давление меняется только относительно атмосферы, давление относительно распылителя форсунки, наоборот, постоянно). При снижении давления в топливной рампе пружина регулятора давления прижимает диафрагму и клапан к седлу клапана, в результате чего слив топлива в бензобак прекращается и создаются условия для увеличения давления на входе. Когда давление топлива превысит усилие пружины регулятора давления, клапан открывается для сброса избытка топлива в линию слива. При включенном зажигании, неработающем двигателе и работающем ЭБН регулятор поддерживает давление в топливной рампе в пределах от 280 до 320 кПа (от 2,8 до 3,2 кгс/см2).

В новых системах с двигателем объемом 1,6 литра нет «обратки», РДТ находится в баке, на бензонасосе и поддерживает давление в топливной магистрали 3,8 кгс/м2. В этом случае давление топлива относительно распылителя форсунки зависит от разрежения во впускной трубе, поэтому, ЭБУ производит коррекцию времени впрыска в зависимости от прогнозируемого разрежения во впуске.

КЛАПАНЫ ПРОДУВКИ АДСОРБЕРА

21103 – 1164200-02 / 2112 – 1164200-02

Элементы систем впрыскаКлапаны продувки адсорбера (далее по тексту – клапан), предназначены для продувки адсорбера системы улавливания паров бензина автомобиля, оснащенного электронной системой управления двигателя, разработаны для норм токсичности ЕВРО – 3(21103) и ЕВРО‑2(2112) удовлетворяют повышенным требованиям европейских стандартов по экологии.

Скорость потока воздуха контролируется посредством широтно-импульсной модуляции входного напряжения на клапаны, которая регулирует соотношение уровней напряжения во включенном и выключенном состоянии клапанов.

Клапаны устанавливаются в составе адсорбера на автомобили, эксплуатируемые в условиях умеренного и тропического климатов при температуре окружающего воздуха от ‑40С до +145С. Применяются на всех видах автомобилей ВАЗ имеющих нейтрализатор и систему управления паров.

Конструкция (фото).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напряжение питания клапана – от 8 до 14В постоянного тока.
Режим работы – импульсный с частотой включения 32 Гц
Номинальная пропускная способность при разряжении:
21103 – (45±5)л/мин.
2112 – (54±4) л/мин.
Рабочий диапазон температур от ‑40С до +130 °С
Масса клапана не более 0.11 кг

БЕНЗОНАСОС

В системе применяется бензонасос турбинного типа. Насоcный узел обеспечивает подачу топлива под давлением 284 кПа из топливного бака через магистральный топливный фильтр на рампу форсунок. Избыток топлива сверх регулируемого давления возвращается в бензобак по отдельной линии слива. Электробензонасос включается контроллером с помощью вспомогательного реле. При установке ключа зажигания в положение ЗАЖИГАНИЕ или СТАРТЕР после пребывания в положении ВЫКЛЮЧЕНО, контроллер сразу запитывает реле включения бензонасос. В результате быстро создаётся нужное давление топлива. Если в течение нескольких секунд прокрутка двигателя не начинается, контроллер выключает реле и ожидает начало прокрутки. После её начала контроллер определяет вращение по опорному сигналу датчика положения коленчатого вала и вновь включает реле, обеспечивая включение бензонасоса. Бензонасосы, устанавливаемые на ВАЗы, бывают трех типов: с маркой GM, BOSCH или отечественные. Для системы GM: Не допускайте работу бензонасоса без бензина, от этого он выходит из строя. Старайтесь, чтобы в топливном баке оставалось не менее 5 литров бензина.
Тех. описание и хар-ки бензонасосов БОШ-Саратов

Результаты испытаний БН различных производителей

Результаты испытания различных бензонасосов на «живучесть» проведенные SPY:

1. БН производства ОАО «ЦАО»
2. БН производства завод города Владимир
3. БН производства Bosch

Тесты проводились на смеси бензина и воды 1/1 дабы ускорить процесс. В процессе теста всё это превратилось в эмульсию. Условия: объём жидкости – 3 литра , насос нагнетал давление в регулятор от жигулей , обратка была помещена в тотже бачок . Насосы были взяты новые , в количестве 2 штуки каждой разновидности . Критерий – отказ БН вращаться.

Результаты :

— ОАО «ЦАО» отработали по часу ровно , каждый .
– Владимирские приборы: один – 1 час 32 минуты , второй – 1 час 50 минут .
– Bosch показал супер результаты : первый проработал ровно четыре часа , второй – 5 часов 11 минут .

Все БН поддерживали нормальное рабочее давление вплоть до полной остановки. На всех моторах пришел в негодность щеточный узел.

В новых модификациях объемом 1,6 литра применен бензонасос со встроенным РДТ. Смотрите на фото – внешний вид и вид со снятым стаканом

СО-ПОТЕНЦИОМЕТР

Элементы систем впрыскаПредставляет собой переменный резистор, с помошью которого можно подавать на ЭБУ управляющее напряжение от нуля до опорного напряжения датчиков. ЭБУ использует этот сигнал для регулировки (обеднения или обогащения) смеси на холостом ходу. Потенциометр СО устанавливался на автомобили без нейтрализатора, затем был “упразднен”, так как регулировка СО стала программной (с помощью диагностического оборудования).

Физически, на автомобилях семейства ВАЗ 2108 он находится в моторном отсеке на щитке передка с левой стороны по ходу движения автомобиля, на автомобилях семейства ВАЗ 2110 – в салоне автомобиля, у правой ноги водителя, на боковом экране торпедо. Потенциометр используется для регулировки состава топливно-воздушной смеси с целью получения нормированного уровня концентрации окиси углерода (СО) в отработанных газах на холостом ходу. СО-потенциометр подобен винту качества смеси в карбюраторе. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания при обязательном контроле состава смеси при помощи газоанализатора. Не крутите бесцельно винт в датчике, от этого он быстро выходит из строя. Для того, что бы внешний потенциометр работал в системе, в комплектации должно быть указано «Потенциометр СО», в противном случае, регулировка, если она поддерживается, возможна только с диагностики.

ФОРСУНКА

Контроллер включает электромагнитный клапан, который механически связан с шариковым запорным элементом, пропуская топливо через клапан и направляющую пластину, обеспечивающую распыление топлива. Направляющая пластина имеет отверстия, которые управляют струёй топлива, образуя собой конический тонко распыленный топливный факел на выходе из форсунки. Факел топлива направлен на впускной клапан. До попадания топлива в камеру сгорания происходит его испарение и перемешивание с воздухом. Автомобили ВАЗ комплектовались форсунками Bosch, Siemens, GM. Эти форсунки полностью взаимозаменяемы, т.к имеют одинаковую производительность. Кроме того допускается частичная замена. Например на рампе с форсунками Бош можно поменять одну или две форсунки GM.  Совет – приобретать форсунки Бош, так как они более надежны, чем GM, хотя как ни странно, форсунки Бош сделаны по лицензии в России. Форсунки GM особенно «боятся» длительные простои автомобиля 6 и более месяцев. Металлические части форсунки начинают окислятся при контакте с некачественным бензином и она отказывает. Если в ходе диагностики форсунок GM выявится более одной неисправной форсунки (чистка не помогает), лучше менять все на новые Бош.  Чистка форсунок дает эффект при пробеге около 40 тыс. км.

Форсунка имеет четыре типа неисправностей, при которых работоспособность еще сохраняется:

1. Закоксовывание выходных отверстий. Приводит к повышенному расходу, к плохому пуску, ухудшению динамики движения автомобиля. Диагностируется только потерей динамики и некоторым повышением расхода топлива. В остальном двигатель ведет себя нормально, ХХ устойчивый и заводится при положительной температуре нормально, при отрицательной – пуск затруднен.

2. Негерметичное закрытие клапана форсунки. Приводит к таким явлениям как повышенный расход, плохой пуск двигателя, троение или детонация на холостом ходу. Диагностируется путем замера СО. На нормально работающей машине без катализатора СО не должно превышать 1% в режиме ХХ. Одна негерметичная форсунка дает прибавку СО примерно 1.0 – 1.5%.

3. Зависание клапана. Приводит к такому явлению, как троение двигателя.  Диагностика заключается в отключении с последующим подключением электрического разъема форсунки на работающем двигателе. Данный процесс сопровождается временным падением холостых оборотов если была отключена нормально работающая форсунка и полным отсутствием реакции двигателя если была отключена не работающая.

4. Нестабильное зависание клапана. Приводит к нестабильности холостых оборотов, вплодь до полной остановки двигателя. Нестабильное зависание клапана форсунки особенно заметно на холостых оборотах. Данное явление сопровождается резким падением холостых оборотов с последующим повышением до 1000 – 1400 оборотов или полной остановкой двигателя. Диагностика, как и в предыдущем случае однако есть нюансы. Если нестабильно зависает одна форсунка то гарантированно диагностируется отключением. Если две и более то только заменой.

В 2006‑м году значительно расширился ассортимент устанавливаемых штатно на а/м ВАЗ форсунок – в настоящее время можно встретить 4 типа форсунок Siemens Deka и еще 2 типа форсунок BOSCH. Подробнее можно почитать ЗДЕСЬ.

Характеристики форсунок Bosch

МОДУЛЬ ЗАЖИГАНИЯ

В модуле зажигания расположены две катушки зажигания и два устройства согласования. Контроллер управляет модулем подавая сигнал по цепям управлением зажиганием одновременно на 1 и 4 цилиндр и соответственно 2 и 3 цилиндр. Такое распределение искры по цилиндрам называется методом холостой искры. Модуль зажигания, как и большинство остальных датчиков и ИМ может иметь множество промежуточных «полурабочих» состояний и при диагностике подлежит самому пристальному вниманию.

Неофициальный рейтинг модулей зажигания ВАЗ:

1. GM (forever!)
2. Москва (выпуск после сентября 2003)
3. СОАТЭ
4. Москва (выпуск до сентября 2003)
5. РД – Йошкар-Ола
6. Новосибирск

В данном рейтинге отсутствует пока новый модуль зажигания Итэлма, не получивший пока массового распространения. По утверждению источника, близкого к производителю, эти блоки прекрасно работают до 9000 об./мин. Из-за более «продвинутой» системы управления эти модули могут не работать с  простыми тестерами МЗ. Заметим, что НПО Итэлма прекратила выпуск модулей в конце 2004 года, но несмотря на это они до сих пор есть в продаже. Как показали исследования, все модули, выпущенные в 2005 году под маркой Итэлма, являются китайской подделкой. Качество их крайне низкое!

Часто встречается и «сборная солянка», например Йоршкар-Олинские модули содержат «московские» платы электроники, но собранные из отечественных комплектующих. Фото1   Фото2   Фото3.

КАТУШКА ЗАЖИГАНИЯ

С конца 2004 г. с конвейера ВАЗ начали сходить автомобили, оснащенные ЭСУД на основе ЭБУ Bosch M7.9.7 или Январь 7.2 (функциональные аналоги). Часть этих ЭСУД была установлена на двигатели 1,5 л, а все двигатели 1,6 идут именно в этой комплектации. Одно из коренных отличий от предыдущего поколения ЭСУД – отсутствие модуля зажигания. Электронная часть МЗ теперь находится непосредственно в ЭБУ и используются внешние катушки зажигания. В 21124 (16V) на каждой свече установлена своя катушка в свечном колодце. Катушка крепится винтом к клапанной крышке. На 21114 (8V) сдвоенная катушка зажигания устанавливается на месте крепления МЗ. Фото катушки 21114. Фото катушки на а/м Нива

Информация Bosch о контрафактных катушках зажигания

ДАТЧИК АБСОЛЮТНОГО ДАВЛЕНИЯ

Благодаря датчику абсолютного давления ЭБУ может следить за изменениями атмосферного давления, которые происходят при изменении барометрического давления и/или изменении высоты над уровнем моря. Указанное барометрическое давление измеряется при включении зажигания до начала прокрутки двигателя. ЭБУ может также «обновить» данные барометрического давления при работающем двигателе, когда дроссель почти полностью открыт на малой частоте вращения двигателя. Датчик абсолютного давления измеряет изменение давления во впускной трубе. Давление изменяется в результате изменения нагрузки двигателя и частоты вращения коленчатого вала. Датчик преобразует эти изменения в выходной сигнал определённого напряжения. Закрытое положение дроссельной заслонки при выбеге двигателя даёт относительно низкое напряжение выходного сигнала абсолютного давления, в то время как полностью открытому положению дроссельной заслонки соответствует высокое напряжение сигнала абсолютного давления. Это высокое выходное напряжение возникает потому, что при полном открытии дроссельной заслонки давление внутри впускной трубы примерно соответствует атмосферному. ЭБУ рассчитывает давление во впускной трубе по сигналу датчика. При высоком давлении требуется повышенная подача топлива, а при низком давлении требуется пониженная подача топлива.

Таблица соответствия давления и напряжения ДАД.

Bar 1.0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0
kPa 100 90 80 70 60 50 40 30 20 10 0
V 4,9 4,4 3,8 3,3 2,7 2,2 1,7 1,1 0,6 0,3 0,3

ДАД GM производится с разным рабочим давлением. Расшифровка.

ЭЛЕКТРОННЫЙ БЛОК УПРАВЛЕНИЯ (ЭБУ)

Электронный блок управления является центром системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет выходными цепями, такими как цепи форсунок, системы электронного зажигания, регулятора холостого хода и различными реле. ЭБУ имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта. В контроллере имеется три вида памяти: оперативное запоминающее устройство (ОЗУ или RAM), программируемое постоянное запоминающее устройство (ППЗУ или ROM)  и электрически программируемое запоминающее устройство (ЭПЗУ или EEPROM).  Микропроцессор контроллера использует ОЗУ для временного хранения измеряемых параметров для расчётов и для промежуточной информации. Эта память является энергозависимой и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчётные данные стираются. В ППЗУ находится общая программа, в которой содержится последовательность рабочих команд и различная калибровочная информация. Эта память является энергонезависимой. ЭПЗУ используется для временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые контроллером от блока управления иммобилизатором (если он имеется на автомобиле), сравниваются с хранимыми в ЭПЗУ и при этом разрешается или запрещается пуск двигателя. Эта память является энергонезависимой и может храниться без подачи питания на ЭБУ.

В описании использованы фотографии с СD – диска компании «Инжектор Плюс»

Понравилась статья? Поделить с друзьями:
  • Albothyl свечи инструкция по применению в гинекологии
  • Руководство love radio
  • Руководство по эксплуатации ниссан альмера классик 2012 года
  • Предстанол инструкция по применению цена отзывы аналоги цена таблетки инструкция
  • Candy infotext стиральная машина инструкция по применению на русском