Руководство по эксплуатации топливной системы

СИСТЕМА ПИТАНИЯ ТОПЛИВОМ

СИСТЕМА ПИТАНИЯ ТОПЛИВОМ обеспечивает фильтрацию топлива и равномерное распределение его по цилиндрам двигателя дозированными порциями в строго определенные моменты.

Рисунок 34 — Система питания топливом с V-образным ТНВД

1…4, 9…12 — топливопроводы высокого давления; 5 — форсунка; 6 — ТНВД; 7 — насос топливоподкачивающий; 8 — трубка отводящая топливоподкачивающего насоса; 13 — клапан электромагнитный; 14 — клапан; 15 — ФТОТ; 16 — трубка топливная подводящая ТНВД; 17 — трубка топливная ЭФУ; 18 — клапан перепускной; 19 — клапан ЭФУ; 20 — трубка топливная дренажная форсунок правых головок; 21 — трубка топливная от электромагнитного клапана к свечам ЭФУ; 22 — тройник; 23 — свеча ЭФУ; 24 — трубка топливная дренажная форсунок левых головок; 25 — заправочная горловина с сетчатым фильтром; 26 — топливный бак; 27 — топливозаборная трубка с сетчатым фильтром; 28 — фильтр предварительной очистки топлива; 29 — ручной топливопрокачивающий насос; 30 — датчик положения исполнительного механизма; 31 — тройник; 32 — бачок системы ПЖД.

На двигателях применены системы питания топливом разделенного типа, состоящие из топливного бака, топливопроводов низкого и высокого давления, фильтра тонкой очистки топлива (ФТОТ), фильтра грубой очистки топлива (ФГОТ), насосов топливоподкачивающего и предпусковой прокачки топлива, топливного насоса высокого давления (ТНВД), электронной системы управления (ЭСУ), модуля педального, форсунок, электромагнитного клапана и штифтовых свечей электрофакельного устройства (ЭФУ).

Топливный бак, фильтр грубой очистки топлива, насос предпусковой прокачки топлива, электронный блок управления и модуль педальный устанавливаются на изделии, на котором применяется двигатель, все остальные элементы системы питания установлены непосредственно на двигателе. Описание конструкции и требования к техническому обслуживанию установленных на изделии агрегатов приводятся в руководстве на изделие.

Рисунок 35 — Система питания топливом с рядным ТНВД «БОШ»:

1…8 — топливопроводы высокого давления; 9 — трубка топливная дренажная форсунок левых головок; 10 — форсунка; 11 — трубка топливная дренажная форсунок правых головок; 12 — трубка топливная отводящая от ТНВД; 13 — трубка топливная отводящая топливоподкачивающего насоса; 14 — трубка топливная подводящая к ТНВД; 15 — клапан электромагнитный ЭФУ; 16 — ФТОТ; 17 — свеча ЭФУ; 18 — насос топливоподкачивающий; 19 — трубка топливная к электромагнитному клапану; 20 — трубка топливная от электромагнитного клапана к свечам ЭФУ; 21 — ТНВД; 22, 33 — тройник; 23 — клапан; 24 — клапан перепускной ТНВД; 25 — втягивающий электромагнит клапана останова; 26 — топливный бак; 27 — заправочная горловина с сетчатым фильтром; 28 — топливозаборная трубка с сетчатым фильтром; 29 — фильтр предварительной очистки топлива; 30 — ручной топливопрокачивающий насос; 31 — электронный регулятор частоты вращения ТНВД; 32 — бачок системы ПЖД.

Схема системы питания двигателя с V-образным ТНВД показана на рисунке 34.

Топливо из топливного бака 26 через фильтр предварительной очистки 28 и ручной топливопрокачивающий насос 29 подается топливоподкачивающим насосом 7 по топливной трубке 8 в фильтр тонкой очистки 15. Из фильтра тонкой очистки по топливной трубке низкого давления 16 топливо поступает в ТНВД 6, который в соответствии с порядком работы цилиндров, распределяет топливо по топливопроводам высокого давления 1…4, 9… 12 к форсункам 5. Форсунки впрыскивают топливо в камеры сгорания. Избыточное топливо, а вместе с ним попавший в систему воздух, через перепускной клапан 18 и клапан 14 отводится в топливный бак.

Схема системы питания двигателя с рядным ТНВД показана на рисунке 35. Приведенные схемы аналогичны и отличаются входящими в них агрегатами и расположением топливопроводов.

ФОРСУНКИ производства «ЯЗДА» (рисунок 36а) и «АЗПИ» (рисунок 36б) закрытой конструкции, с шестью распыливающими отверстиями и гидравлическим управлением подъёма иглы распылителя. Все детали форсунки собраны в корпусе 9. К нижнему торцу корпуса форсунки гайкой 3 через проставку 4 прижат корпус распылителя 1, внутри которого находится игла 2. Корпус и игла распылителя составляют прецизионную пару. Угловая фиксация корпуса распылителя относительно проставки и проставки относительно корпуса форсунки осуществлена штифтами. На верхний конец иглы распылителя через штангу 5 оказывает давление пружина 6. Необходимое усилие этой пружины осуществляется набором регулировочных шайб 7, устанавливаемых между пружиной и торцом внутренней полости корпуса форсунки. Торец гайки 3 распылителя уплотнен от прорыва газов гофрированной медной прокладкой. Уплотнительное кольцо 8 предохраняет полость между форсункой и головкой цилиндра от попадания пыли и жидкостей.

Рисунок 36 — Форсунки:

1- корпус распылителя; 2 — игла распылителя; 3 — гайка распылителя; 4 — проставка; 5 — штанга форсунки; 6 — пружина форсунки; 7 — регулировочные шайбы; 8 — уплотнительное кольцо; 9 — корпус форсунки; 10 — щелевой фильтр; 11- штуцер форсунки а — «ЯЗДА», б — «АЗПИ»:

Топливо к форсунке подается под высоким давлением, проходит через щелевой фильтр 10, далее по каналам корпуса 9, проставки 4 и корпуса распылителя 1 попадает в полость между корпусом распылителя и иглой 2. Топливо, поступающее под высоким давлением из секций ТНВД к форсункам, преодолев прижимное усилие пружины форсунки, поднимает иглу распылителя и через распыливающие отверстия впрыскивается в камеру сгорания.

Топливо, просочившееся через зазор между иглой и корпусом распылителя, отводится по каналам в корпусе форсунки и сливается в топливный бак через дренажные трубки форсунок.

Каждая форсунка 1 (рисунок 37) установлена в головке цилиндра 2, зафиксирована литой скобой 3, которая закреплена гайкой 5 со сферической шайбой 4. Момент затяжки гайки 5 составляет 35…40 Н-м (3,6…4,1 кгс-м).

ВНИМАНИЕ!

Проверку и регулировку форсунок, а также замену распылителей, необходимо проводить в специализированной мастерской квалифицированным специалистом.

Категорически запрещается установка не приведенных в таблице 1 настоящего руководства моделей форсунок, ввиду возможности выхода из строя двигателя!

Рисунок 37 — Установка топливной форсунки:

1 — форсунка; 2 — головка цилиндра; 3 — скоба крепления форсунки; 4 — шайба сферическая; 5 — гайка; 6 — шпилька; 7 — опора скобы; 8 — уплотнительное кольцо.

ТОПЛИВНЫЕ НАСОСЫ ВЫСОКОГО ДАВЛЕНИЯ предназначены для формирования подачи в цилиндры двигателя строго дозированных порций топлива под высоким давлением в определенные моменты. При этом подача топлива в цилиндры двигателя производится при строго определённых углах поворота коленчатого вала двигателя.

На двигателях КАМАЗ применяются:

— V-образный ТНВД мод. 337-23 производства ОАО «ЯЗДА» с электронной системой управления двигателем

— рядный ТНВД мод. Р7100 производства ф. «БОШ» (Германия) с механическим или электронным регуляторами.

Рисунок 38 — V-образный ТНВД:

1 — корпус ТНВД; 2 — толкатель; 3 — сухарь; 4 — пружина толкателя; 5 — поворотная втулка; 6 — плунжер; 7- рейка; 8 — корпус секции ТНВД; 9 — втулка плунжера; 10 — корпус нагнетательного клапана; 11 — нагнетательный клапан; 12 — штуцер; 13 — топливоподкачивающий насос; 14- разъем ИМ; 15- крышка регулятора верхняя; 16 — рычаг реек; 17 — датчик положения ИМ; 18 — исполнительный механизм (ИМ); 19 — перепускной клапан; 20 — пробка рейки; 21 — подшипник; 22 — регулировочные прокладки; 23 — кулачковый вал; 24 — эксцентрик привода топливоподкачивающего насоса; 25 — крышка регулятора задняя; 26 — пружина возвратная ИМ; 27 — датчик температуры топлива.

ТНВД расположен в развале блока цилиндров двигателя. Его привод осуществляется от коленчатого вала двигателя через гитару зубчатых колес при помощи вала привода, ведущей и ведомой полумуфт с упругими пластинами, компенсирующими несоосность деталей привода и кулачкового вала ТНВД.

С топливным насосом высокого давления в одном агрегате объединен топливоподкачивающий насос.

Применяемый на двигателях V-образный ТНВД показан на рисунке 38.

В расточке нижней части корпуса расположен кулачковый вал 23 с напрессованными на него роликовыми коническими подшипниками 21. От осевого перемещения кулачковый вал зафиксирован двумя крышками. Под крышки подшипников устанавливаются регулировочные прокладки 22, которыми регулируется натяг в подшипниках, который должен составлять 0,05 … 0,10 мм.

В расточки корпуса установлены толкатели 2, состоящие из корпуса толкателя, ролика, втулки и оси, которая фиксируется относительно корпуса толкателя штифтом. Толкатель в сборе фиксируется от проворота в корпусе ТНВД с помощью специального сухаря 3.

В расточки корпуса установлены восемь съёмных секций в сборе. Каждая секция состоит из корпуса секции 8, поворотной втулки 5, втулки 9 с плунжером 6 и нагнетательного клапана 11, поджатого штуцером 12 к втулке плунжера.

Плунжер 6 приводится в движение от кулачкового вала посредством толкателя. Пружина 4 через тарелку постоянно прижимает ролик толкателя к кулачку, что обеспечивает возвратно-поступательное движение плунжера. Диаметр плунжера 12 мм.

Плунжерная пара служит для создания давления топлива у форсунки и изменения количества топлива, подаваемого в камеру сгорания двигателя за цикл. Дозирование топлива осуществляется одновременным изменением как начала, так и конца цикла нагнетания топлива.

Втулка плунжера имеет два окна, расположенных на одном уровне, которые одновременно служат для наполнения и для отсечки топлива. Когда плунжер находится в нижнем положении, через оба окна топливо затекает в надплунжерную полость. При движении вверх, в момент перекрытия окон верхней кромкой плунжера, начинается активный ход плунжера, в течение которого топливо вытесняется в нагнетательный трубопровод.

Для изменения начала нагнетания в зависимости от нагрузки, на верхнем торце плунжера выполнена управляющая кромка специальной формы. Когда винтовые кромки плунжера начинают открывать окна, активный ход заканчивается, топливо начинает поступать в отсечную полость, давление в надплунжерной полости резко падает и впрыск топлива прекращается.

Для изменения количества впрыскиваемого топлива плунжер поворачивается вокруг своей оси с помощью поворотной втулки, которая связана с рейкой ТНВД.

Итак, при помощи управляющей кромки изменяют начало подачи топлива, а при помощи отсечных кромок — момент отсечки. При этом меняются не только углы начала и конца подачи, но и количество впрыскиваемого топлива

Принцип работы рядных насосов фирмы «БОШ» аналогичен.

Установка рядного насоса с механическим регулятором на двигатель и его связи с моторными системами показана на рисунке 39. Установка насоса с электронным регулятором аналогична, при этом рычаги регулятора и останова, а также болты ограничения их перемещения отсутствуют.

ВНИМАНИЕ!

Проверку, регулировку и ремонт ТНВД допускается производить только в специализированных мастерских сервисных центров квалифицированным персоналом.

Проверку и техническое обслуживание V-образных ТНВД выполнять один раз в два года (см. таблицу 11). Техническое обслуживание ТНВД ф. «БОШ» при соблюдении требований эксплуатации не проводится.

Во избежание ухудшения качества рабочего процесса в двигателе, повышения токсичности и дымности отработавших газов, а также выхода двигателя из строя категорически запрещается установка на двигатели не указанных в таблице 1 настоящего руководства моделей ТНВД.

Рисунок 39 — Установка и внешние связи рядного ТНВД фирмы БОШ с механическим регулятором:

1 — насос топливоподкачиваюгций; 2 — болт ограничения минимальных оборотов; 3 — рычаг регулятора; 4 — болт ограничения максимальных оборотов; 5 — рычаг останова.

ФИЛЬТР ТОНКОЙ ОЧИСТКИ ТОПЛИВА (рисунок 40) предназначен для окончательной очистки топлива от мелких частиц перед поступлением в ТНВД. Фильтр установлен в самой высокой точке системы питания топливом для сбора и удаления в бак воздуха вместе с частью топлива через клапан, который установлен на перепуске из фильтра.

ВНИМАНИЕ!

При замене фильтрующих элементов необходимо строго соблюдать правила обслуживания системы питания топливом. Не допускайте попадания загрязнений в систему питания и применяйте фильтрующие элементы только следующих моделей: 740.1117040-01, 740.1117040-02, 740.1117040-04.

КЛАПАН фильтра тонкой очистки топлива 13 представлен на рисунке 40. Клапан предназначен для удаления воздуха, скапливающегося в верхней части фильтра тонкой очистки топлива, а также для предохранения фильтрующих элементов от разрыва. При достижении давления в полости «Б» подвода топлива 25…80 кПа (0,25…0,80 кгс/см2), происходит перемещение шарика 15 и перетекание топлива из полости «Б» в полость «А» через жиклёр 16 клапана. При давлении 200…240 кПа (2,0…2,4 кгс/см2) обеспечивается полное открытие клапана и перепуск топлива в топливный бак через полость «А». При нормальной работе двигателя воздух, скапливающийся в верхней части ФТОТ вместе с частью топлива, циркулирующей в магистрали низкого давления, через клапан прокачивается в топливный бак. Расход топлива ограничивается жиклёром 16. При засорении фильтроэлементов до критических значений давление в полости Б возрастает, что приводит к значительному расходу топлива через жиклёр. В результате этого двигатель теряет мощность и останавливается.

Рисунок 40 — Фильтр тонкой очистки топлива:

1 — корпус; 2 — болт; 3 — уплотнительная шайба; 4- пробка; 5, 6- прокладки; 7 — фильтрующий элемент; 8 — колпак; 9- пружина; 10 — сливная пробка; 11 — стержень; 12 — гайка; 13 — корпус клапана; 14 — пружина клапана; 15 — шарик; 16 — жиклер; А- полость отвода топлива; Б — полость подвода топлива.

НАСОС ТОПЛИВОПОДКАЧИВАЮЩИЙ 7 (рисунок 34) или 18 (рисунок 35) поршневого типа, предназначен для подачи топлива из бака через фильтры предварительной и тонкой очистки к плунжерным парам ТНВД.

Насос установлен на ТНВД. Схема работы насоса показана на рисунке 41. В корпусе топливоподкачивающего насоса размещены: поршень, пружина поршня, толкатель, впускной и нагнетательный клапаны с пружинами. Возвратно-поступательное движение поршня 1 осуществляется под действием толкателя 9, расположенного с одной стороны поршня и пружины 4 — с другой стороны.

Насос топливоподкачивающий работает только при вращении эксцентрика 8, т.е. при вращении кулачкового вала ТНВД.

При движении поршня 1 вверх под действием толкателя 9 топливо, преодолев усилие пружины 6, открывает клапан 5 и из полости «Б» поступает в полость «А» (под поршнем). Клапан 2 при этом закрыт.

При опускании толкателя 9 поршень 1 под действием пружины 4 движется вниз. В полости «Б» создается разрежение и впускной клапан 2, сжимая пружину 3, пропускает топливо из подводящего топливопровода «Г» в полость «Б». Одновременно топливо, находящееся в нагнетательной полости «А», вытесняется в отводящий топливопровод «В», при этом клапан 5 под действием пружины 6 закрывается, исключая перетекание топлива из полости «А» в полость «Б».

Рисунок 41 — Схема работы топливоподкачивающего насоса:

1 — поршень; 2 — впускной клапан; 3, 6 — пружины клапанов; 4 — пружина поршня; 5- нагнетательный клапан; 7- пружина толкателя; 8 — эксцентрик; 9 — толкатель; А — полость нагнетания топливоподкачивающего насоса; Б — полость всасывания топливоподкачивающего насоса; В — отводящий топливопровод (к ФТОТ); Г — подводящий топливопровод (от фильтра предварительной очистки топлива).

ФИЛЬТР ПРЕДВАРИТЕЛЬНОЙ (ГРУБОЙ) ОЧИСТКИ ТОПЛИВА

В топливных системах двигателей КАМАЗ, с целью повышения их надежности, должны применяться фильтры грубой (предварительной) очистки топлива со степенью очистки от частиц механических примесей размером до 30 мк не менее 95% и воды не менее 93%. Таким требованиям отвечает фильтр PreLine 270 фирмы «MANN HUMMEL», изображенный на рисунке 42.

Фильтр предварительной очистки топлива состоит из корпуса 5, на который установлены: ручной топливопрокачивающий насос 3 мембранного типа, сменный фильтрующий элемент (фильтр-патрон) 8 с водосборным стаканом 9, электроподогреватель топлива 6, который при работе в условиях тропического климата может не устанавливаться, тогда вместо него ставится заглушка.

Неочищенное топливо из бака по топливным трубкам подаётся во впускной канал 1 фильтра предварительной очистки топлива, затем в фильтр-патрон, где происходит отделение воды и очистка от механических примесей и твёрдых частиц размерами более 30 мкм. Механические примеси, твёрдые частицы и вода задерживаются фильтроэлементом сменного фильтр-патрона и скапливаются в водосборном стакане. Очищенное топливо поступает в полость выпускного канала 7 и далее по топливным трубкам в топливоподкачивающий насос.

Перед пуском двигателя после длительной стоянки и после смены фильтр-патрона производится удаление воздуха из полостей фильтра предварительной очистки топлива. Для этого ослабляется винт удаления воздуха 4 и прокачивается топливо ручным насосом 3 до тех пор, пока из отверстия винта удаления воздуха не пойдет топливо без воздуха, после чего винт завернуть.

В эксплуатации необходимо ежедневно сливать отстой, повернув винт 10, расположенный на дне водосборного стакана.

Фильтр-патрон (№ для заказа: 66 604 58 190) рекомендуется менять через одно ТО-2 (32…33 тыс. км пробега автомобиля) или чаще, если наблюдается падение мощности двигателя по причине использования некачественного (загрязнённого) топлива. Процедура замены представлена на корпусе каждого фильтр-патрона в виде рисунков и надписей.

Рисунок 42 — Фильтр предварительной очистки топлива PreLine 270 ф. «MANN+HUMMEL»:

1 — впускной канал; 2 — крышка мембраны ручного топливопрокачивающего насоса (ТПН); 3 — ручной ТПН; 4 — винт удаления воздуха; 5 — корпус; 6 — электроподогреватель; 7, 11 — выпускной канал; 8 — сменный фильтрующий элемент; 9 — водосборный стакан; 10 — винт слива воды.

В случае работы в странах с холодным климатом фильтр PreLine 270 комплектуется встроенным электроподогревателем топлива 6 мощностью 350 Вт, предотвращающим парафинообразование при низких температурах окружающего воздуха. Подогреватель автоматически включается при температуре топлива +5°С.

Альтернативным вариантом фильтра предварительной очистки топлива PreLine 270 фирмы «MANN+HUMMEL» (Германия), применяемого на двигателях КАМАЗ, является фильтр предварительной очистки топлива RACOR SK 1969 фирмы «PARKER» (США), который имеет аналогичную конструкцию и близкие технические характеристики. Фильтр отличается конструкцией ручного топливопрокачивающего насоса, мощностью электроподогревателя 300 Вт и сменным фильтр-патроном (№ для заказа: 66 604 58 190). Для работы в странах с тропическим климатом применяется фильтр RACOR SK 1967 (без электроподогревателя топлива).

ТОПЛИВОПРОВОДЫ подразделяются на топливопроводы низкого давления — 0,4.. .2,0 Мпа (4…20 кгс/см ) и высокого давления — более 30 МПа (300 кгс/см ).

Топливопроводы низкого давления двигателей изготовлены из стальной трубы сечением 10х1 мм с паяными наконечниками, а высокого давления из стальных трубок внутренним диаметром 2 мм, наружным — 7 мм с гайками и конусными наконечниками. Во избежание поломок от вибрации топливопроводы закреплены скобами к впускным коллекторам.

ПРИВОД ТНВД показан на рисунке 43. Он состоит из вала привода ТНВД 8 с пакетами передних 4 и задних 6 компенсирующих пластин, полумуфты ведомой 2, фланца ведомой полумуфты 3, фланца центрирующего 5, полумуфты ведущей 10 и центрирующих втулок 13. Каждый пакет компенсирующих пластин состоит из 6-ти пластин толщиной 0,5 мм каждая, изготовленных из стали 65Г.

ОБСЛУЖИВАНИЕ СИСТЕМЫ ПИТАНИЯ ТОПЛИВОМ

В процессе эксплуатации двигателя и особенно в начальный ее период необходимо регулярно проверять момент затяжки гайки 5 (рисунок 37) крепления скоб форсунок и болта 11 (рисунок 43) ведущей полумуфты привода ТНВД.

Регулярно сливайте отстой из фильтров тонкой и предварительной очистки топлива. Методика обслуживания фильтра предварительной очистки топлива приведена в описании фильтра. Для слива воды из фильтра тонкой очистки топлива отвернуть на два-три оборота сливные пробки 10 (рисунок 40). Отстой сливать до появления чистого топлива.

Смену фильтрующих элементов фильтра тонкой очистки топлива рекомендуется проводить каждые 20000 км пробега изделия или 560 часов работы двигателя, для чего:

— вывернуть на два-три оборота сливные пробки и слить топливо из колпаков фильтра в посуду, затем ввернуть пробки;

-вывернуть болты крепления колпаков фильтра, снять колпаки и удалить загрязненные фильтрующие элементы;

-промыть колпаки дизельным топливом;

-установить в каждый колпак новый фильтрующий элемент с уплотнительными прокладками, установить колпаки с фильтрующими элементами и затянуть болты;

— прокачать систему насосом предпусковой прокачки топлива;

— пустить двигатель и убедиться в герметичности фильтра.

Подтекание топлива устранить подтяжкой болтов крепления колпаков.

Проверку и обслуживание ТНВД проводить в специализированных и аттестованных сервисных центрах ОАО «ЯЗДА», ОАО «КАМАЗ» и фирмы «БОШ».

Давление начала впрыскивания топлива форсунок регулируется на стенде путем установки регулировочных шайб под пружину при снятых гайке, распылителе, проставке и штанге. При увеличении общей толщины регулировочных шайб (повышение сжатия пружин) давление начала впрыскивания возрастает. Изменение толщины шайб на 0,05 мм приводит к изменению давления начала впрыскивания на 0,30.. .0,35 Мпа (3,0.. .3,5 кгс/см2).

Количество устанавливаемых шайб должно быть не более трех.

Давление начала впрыскивания — согласно требованиям таблицы 1.

Начало и конец впрыскивания топлива должны быть четкими. Распылитель не должен иметь подтеканий. Впрыскивание должно сопровождаться характерным звуком. Замена одной какой-либо детали (корпуса распылителя или иглы) не допускается, так как они составляют прецизионную пару.

После обслуживания и ремонта V-образные и рядные ТНВД устанавливать на двигатель в следующей последовательности:

1 Собрать ТНВД с валом привода согласно рисунку 43 в зависимости от комплектации двигателя, при этом необходимо совместить установочную метку на фланце ведомой полумуфты с указателем на корпусе ТНВД. Допустимое смещение установочной метки в сторону увеличения угла опережения впрыскивания топлива — не более 2-х мм.

2 В ТНВД залить (проконтролировать уровень) моторное масло, применяемое на двигателе, до уровня сливного отверстия.

3 Установить фиксатор в паз маховика. При этом метка на детали поз. 2 должна быть расположена вверху, а шпонка 12 должна быть расположена в горизонтальной плоскости на стороне восьмого цилиндра. Ведущую полумуфту установить на вал ведомой шестерни привода ТНВД, не затягивая стяжного болта.

4 Установить ТНВД с приводом на двигатель. Затянуть болты крепления ТНВД к блоку цилиндров перекрестным методом в два приема. Моменты затяжки приведены в приложении А.

ТНВД с приводом в развале блока цилиндров должен быть закреплён без перекосов.

5 Закрепить болтами 10 пакет задних пластин привода ТНВД, предварительно установив в них центрирующие втулки 13.

6 Стяжной болт 11 затягивать в последнюю очередь. Для этого необходимо его ослабить так, чтобы ведущая полумуфта могла свободно перемещаться вдоль вала и занять оптимальное положение, исключающее осевое напряжение и деформацию (изгиб) передних и задних пластин. После этого затянуть болт крепления полумуфты

7 После окончания установки и регулировки рукоятку фиксатора маховика установить в мелкий паз на корпусе фиксатора.

8 Затянуть гайки топливопроводов высокого давления

Рисунок 43 — Установка привода ТНВД на двигателях:

1 — корпус ТНВД; 2 — полумуфта ведомая; 3 — фланец ведомой полумуфты; 4, 6 — пакеты компенсирующих пластин; 5 — фланец центрирующий; 7,9 — болты крепления; 8 — вал привода; 10 — полумуфта ведущая; 11 — болт полумуфты ведущей; 12 — шпонка; 13 — втулка центрирующая; 14 — подшипник 306 в картере агрегатов. S — допускаемое смещение установочной метки в сторону увеличения угла опережения впрыскивания топлива не более 2-х мм.

Проверку установки и регулировки угла опережения впрыскивания топлива с помощью моментоскопа проводить в следующем порядке:

1 Отсоединить трубку высокого давления от восьмой секции ТНВД.

2 На штуцер восьмой секции установить моментоскоп.

3 У двигателей с V-образным ТНВД с электронным регулятором, при помощи специального диагностического оборудования и ЭБУ установить положение рейки, соответствующее 100 %-му перемещению (контролируется датчиком положения рейки).

У двигателей с рядным ТНВД с электронным регулятором, при помощи специального диагностического оборудования и ЭБУ установить напряжение электрического сигнала положения рейки ТНВД — 4,7 В.

У двигателей с рядным ТНВД с механическим регулятором, рычаг привода управления регулятором 3 перевести в среднее положение (рисунок 39).

4 Заполнить топливную систему двигателя топливом с помощью стендового топливопрокачивающего насоса.

5 Вращая коленчатый вал двигателя, заполнить топливом стеклянную трубку моментоскопа (ВНИМАНИЕ! Коленчатый вал вращать только вручную).

6 Вращая коленчатый вал двигателя, совместить установочную метку (риску) фланца ведомой полумуфты с указателем на корпусе ТНВД (рисунок 43).

7 Провернуть коленчатый вал двигателя на пол-оборота против хода вращения (по часовой стрелке, если смотреть со стороны маховика).

8 Перевести фиксатор маховика в глубокий паз и медленно повернуть коленчатый вал двигателя по ходу вращения до момента начала движения топлива в стеклянной трубке моментоскопа или до вхождения фиксатора в паз маховика.

Если в момент начала движения топлива в стеклянной трубке моментоскопа:

— фиксатор вошел в паз маховика двигателя;

— установочная метка фланца ведомой полумуфты и указатель на корпусе ТНВД совпали (допускается несовпадение метки относительно указателя не более 2 мм в сторону опережения впрыскивания топлива);

— головка стяжного болта 11 ведущей полумуфты находится как показано на рисунке 43, то угол опережения впрыскивания топлива установлен правильно, фиксатор перевести в мелкий паз.

Если в момент начала движения топлива в стеклянной трубке моментоскопа паз маховика двигателя не дошел до фиксатора, ослабить болты крепления ведомой полумуфты и медленно повернуть коленчатый вал по ходу вращения до вхождения фиксатора в паз маховика, затянуть болты крепления ведомой полумуфты, перевести фиксатор в мелкий паз и проверить точность установки угла опережения впрыскивания топлива.

Если фиксатор вошел в паз маховика двигателя, а топливо в стеклянной трубке моментоскопа не двинулось, необходимо перевести фиксатор в мелкий паз и медленно повернуть коленчатый вал по ходу вращения до момента начала движения топлива в стеклянной трубке моментоскопа, ослабить болты крепления ведомой полумуфты, провернуть коленчатый вал против хода вращения на 4… 10° дальше фиксатора, перевести фиксатор в глубокий паз и медленно повернуть коленчатый вал по ходу вращения до вхождения фиксатора в паз маховика, затянуть болты крепления ведомой полумуфты, перевести фиксатор в мелкий паз и проверить точность установки угла опережения впрыскивания топлива.

9 Проверить точность установки угла опережения впрыскивания топлива, для чего:

— провернуть коленчатый вал на 1,5 оборота по ходу вращения;

— перевести фиксатор маховика в глубокий паз;

— медленно поворачивая по ходу вращения коленчатый вал, внимательно следить за уровнем топлива — фиксатор маховика должен войти в паз маховика двигателя в момент начала движения топлива в стеклянной трубке моментоскопа. При этом установочная метка фланца ведомой полумуфты и указатель на корпусе ТНВД должны совпасть (допускается несовпадение метки относительно указателя не более 2 мм в сторону опережения впрыскивания топлива);

— перевести фиксатор маховика в мелкий паз.

Установка угла опережения впрыскивания топлива по моментоскопу является приоритетной.

При отсутствии моментоскопа допускается проверка установки и регулировка угла опережения впрыскивания топлива по меткам. Для этого, предварительно выключив подачу топлива и затормозив изделие, выполнить следующие операции:

1 Проверить точность установки угла опережения впрыскивания топлива, для чего:

— провернуть коленчатый вал до совмещения установочной метки фланца ведомой полумуфты с указателем на корпусе ТНВД (рисунок 43);

— провернуть коленчатый вал на пол-оборота против хода вращения (по часовой стрелке, если смотреть со стороны маховика);

— перевести фиксатор маховика в глубокий паз и медленно повернуть коленчатый вал по ходу вращения до момента, когда фиксатор войдет в паз маховика.

Если в этот момент:

— установочная метка фланца ведомой полумуфты и указатель на корпусе ТНВД совпали (допускается несовпадение метки относительно указателя не более 2 мм в сторону опережения впрыскивания топлива);

— головка стяжного болта 11 ведущей полумуфты находится как показано на рисунке 43, то угол опережения впрыскивания топлива установлен правильно, фиксатор перевести в мелкий паз.

2 При несовпадении (с учетом допуска 2 мм) установочной метки фланца ведомой полумуфты и указателя на корпусе ТНВД в момент, когда фиксатор вошел в паз маховика необходимо провести регулировку угла опережения впрыскивания топлива, для чего:

— ослабить болты крепления фланца ведомой полумуфты;

— медленно повернуть фланец ведомой полумуфты до совмещения установочной метки с указателем на корпусе ТНВД;

— затянуть болты крепления фланца ведомой полумуфты;

— перевести фиксатор маховика в мелкий паз;

— проверить точность установки угла опережения впрыскивания топлива по пункту 1.

Проверить затяжку болтов привода ТНВД динамометрическим ключом.

Топливная система автомобилей Фольксваген, Ауди, Шкода, Сеат

Fuel System

Общая документация


Снятие и чистка бензонасоса на автомобилях (rus.)
Фотоотчет


Замена топливного фильтра на двигателе TDI (rus.)
Фотоотчет


Каталог топливных форсунок с техническими данными и их применяемостью (eng.)


Определение причины выхода из строя форсунки (rus.)
В справочном пособии подробно рассмотрены причины выхода из строя современных дизельных форсунок. Для каждого случая даны фотографии, признаки неисправности, причины ее появления и возможные пути устранения.


Ремонт топливного насоса высокого давления (ТНВД) Bosch VP44 — 059 130 106D (rus.)
Фотоотчет

Данный насос куда только не ставился: на VW Passat B5, Audi A4, A6, BMW, Opel, на фуры и пр. Часто ломается — поэтому я думаю информация не повредит.

Итак, если у вас после прокачки грушей или чем-либо с форсуночных трубок при прокрутке стартером ничего не давит — значит вам сюда, у вас проблемы с механикой: самый вероятный вариант — повреждение мембраны (либо рез. колец), второй вариант — дефект подкачивающего насоса. Все это увидите на фото, у кого все исправно — тут вы сможете рассмотреть ТНВД со всех ракурсов.


Насос-форсунка с пьезоэлектрическим клапаном (rus.)
Конструкция и принцип действия. Пособие по программе самообразования 352 VW/Audi.

Применение насос-форсунок и постоянное улучшение их конструкции позволили повысить давления впрыска, точность дозирования топлива и улучшить КПД топливной аппаратуры дизелей и тем самым обеспечить их высокую конкурентоспособность.
Разработанная совместно с фирмой Siemens VDO Automotive AG насос-форсунка не только сохраняет известные преимущества предыдущей конструкции, но и обладает рядом улучшенных характеристик в отношении формирования запальной, основной и дополнительных доз топлива.
В результате применения в ее конструкции ряда перспективных технических решений удалось улучшить смесеобразование и повысить КПД ее
привода, а также снизить шум, производимый при работе топливной аппаратуры.

Содержание: Введение, Общие сведения, Улучшенные характеристики новой насос-форсунки, Устройство насос-форсунки, Общая конструкция, Пьезоэлектрический клапан, Полость пружины форсунки, Процесс впрыска топлива, Впрыск запальной дозы, Впрыск основной дозы, Впрыск дополнительной дозы, Техническое обслуживание.


Электрические топливные насосы: типоразмеры, неисправности, причины (rus.)
Техническая информация Motorservice. 4-е издание, 2015 год.
В фирменном учебном пособии изложены принципы действия и конструкция электрических топливных насосов, приведены их основные типоразмеры и рабочие характеристики, описаны возможные неисправности, механические повреждения, диагностика и контроль. Показано влияние загрязнений топлива на работу насосов, рассмотрены особенности насосов для биодизеля, работающего на растительном топливе. Пособие отличается информативность и прекрасно иллюстрировано.


Топливная система двигателей FSI (rus.)
Устройство и принцип действия. Пособие по программе самообразования 334 VW/Audi.
Все двигатели FSI мощностью 66 кВт и более оснащаются усовершенствованной топливной системой.

Эта система имеет следующие отличия: Детали насоса высокого давления и рампы форсунок имеют специальное антикоррозионное покрытие, которое защищает их от воздействия
топлива с содержанием этанола до 10%. Изменено управление насосом высокого давления. Устранен за ненадобностью трубопровод отвода
(в бак) топлива, просочившегося вдоль плунжера. Отвод топлива, сбрасываемого через установленный на рампе форсунок предохранительный
клапан, производится через относительно короткий трубопровод в контур низкого давления, перед насосом высокого давления.
В данной программе самообразования описываются устройство и действие усовершенствованной
топливной системы на примере двухлитрового двигателя FSI мощностью 110 кВт.

Содержание: Состав и схема топливной системы, Принцип регулирования подачи топлива по его расходу, Компоненты топливной системы, Блок управления топливным насосом, Подкачивающий электронасос, Насос высокого давления с регулятором давления топлива, Датчик низкого давления, Датчик высокого давления, Форсунки высокого давления, Регулятор давления, Переходник с дросселем.


Fuel supply system, petrol engines (eng.)
Workshop Manual

Руководство по ремонту топливной системы бензиновых двигателей. Редакция 02.2017

Двигатели с буквенным обозначением: CMBA, CHPA, CJZA, CJZB, CJSA, CXSA, CJXA, CJXE, CYVA, CYVB, CZCA, CZEA, CWVA, CHZD, CZDA, CJXH, CJSB, CJXC устанавливались на автомобили:

Volkswagen Arteon (код модели: 3H7) 2017 —

Volkswagen Tiguan 2 (код модели: AD1, BT1) 2016 —

Volkswagen Polo Sedan (614) 2015 —

Volkswagen Golf 7 (код модели: 5K1, 5G1, AU1, BA5, AJ5) 2012 —

Volkswagen Passat B8 (код модели: 3G2, 3G5) 2015 —

Volkswagen Touran 2 (код модели: 5T1) 2016 —

Volkswagen Golf Sportsvan (код модели: AM1) 2014 —

Volkswagen Scirocco (138) 2015 —

Volkswagen Jetta 6 (163, AV3) 2016 —

Volkswagen Caddy 4 (SAA, SAB, SAH, SAJ) 2016 —

Volkswagen Sharan 2 (код модели: 7N2) 2016 —

Volkswagen Beetle (код модели: 5C1, 5C2, 5C7, 5C8) 2015 —

Skoda Kodiaq (код модели: NS7) 2017 —

Skoda Rapid (NH1, NH3, NK3) 2013 —

Skoda Octavia 3 A7 (код модели: 5E3, 5E5, NL3) 2012 —

Skoda Superb 3 (код модели: 3VC, 3V5) 2015 —

Skoda Yeti (код модели: 5L1, 5L2, 5L7, 5L6) 2010 — 2015

Skoda Fabia 3 (код модели: NJ3, NJ5) 2015 —

Audi Q2 (код модели: GAB) 2017 —

Audi Q3 (код модели: 8UG) 2015 —

Audi A1 (код модели: 8XK) 2015 —

Audi A3 (код модели: 8V1, 8VA, 8V7) 2013 — 2016

Audi A3 (код модели: 8VK, 8VF, 8VE, 8VM) 2017 —

Audi TT Mk3 (код модели: FV3, FV9) 2015 —

SEAT Ateca (код модели: KH7) 2017 —

SEAT Arona (код модели: KJ7) 2017 —

SEAT Alhambra 2 (код модели: 711) 2016 —

SEAT Leon 3 (код модели: 5F1, 5F5, 5F8) 2013 —

SEAT Toledo 4 (код модели: KG3) 2013 —

SEAT Ibiza Mk4 (код модели: 6P1, 6P5, 6P8) 2016 —

SEAT Ibiza Mk5 (код модели: KJ1) 2018 —

Содержание: 00 — Technical data, 20 — Fuel supply system.

133 страницы. 4 Mb.


Дизельные аккумуляторные топливные системы Common Rail (rus.)
В руководстве по самообразованию Bosch описаны дизельные аккумуляторные топливные системы Common Rail, область применения топливных систем дизелей, технические требования, конструкции ТНВД, обзор топливных систем, характеристики впрыска топлива, снижение токсичности ОГ, устройство и работа компонентов топливной системы, система электронного управления (EDC), обзор систем электронного управления, обработка данных в электронном блоке управления дизелей, передача данных другим системам, системы облегчения пуска двигателя. 38 Мб.


Системы подачи топлива с насос-форсунками и индивидуальными ТНВД (rus.)
Учебное пособие R.Bosсh GmbH.
Все повышающиеся требования к транспортным двигателям привели к разработке множества различных систем подачи топлива в дизелях, соответствующих специальным нормам. Эти требования диктуют современным дизелям не только необходимость обеспечения малошумной работы, низкой токсичности ОГ и высокой топливной экономичности, но и большой мощности и высокого крутящего момента. Самые высокие давления впрыска топлива в настоящее время достигнуты в топливных системах с насос-форсунками и с индивидуальными ТНВД. Тот факт, что эти топливные системы позволяют обес печить точное соответствие параметров впрыска топлива эксплуатационным условиям двигателя, означает их востребованность. Эти современные топливные системы требуют, чтобы множество их компонентов были тесно взаимосвязаны друг с другом.


Рядные многоплунжерные топливные насосы высокого давления дизелей (rus.)
Учебное пособие Robert Bosch GmbH, 2009. Данная книга является частью серии «Технические инструкции», касающейся методов обеспечения впрыска топлива в дизелях. В ней находит объяснение каждый важный аспект множества конструкций ТНВД и их компонентов, таких как корпусы ТНВД и нагнетательные клапаны, также как и проникновение в принципы их работы. В книге имеются также главы, посвящённые регуляторам частоты вращения и системам автоматического регулирования и управления, описание функциональных режимов, таких как ограничение промежуточной и максимальной частоты вращения, конструктивных типов ТНВД и принципов действия. Приводятся также объяснения устройства и работы таких важных компонентов систем топливоподачи дизелей, как форсунки и распылители форсунок. В главе, посвящённой способам технического обслуживания, описываются методы испытаний и регулировок элементов топливных систем дизелей. Отдельно даются подробные объяснения принципов работы систем электронного управления дизелей (EDC).

Содержание: Обзор топливных систем дизелей, Технические требования, Обзор топливных систем с рядными многоплунжерными ТНВД, Области применения, Типы ТНВД, Состав системы, Регулирование, Система топливоподачи (линия низкого давления), Топливный бак, Топливные линии (трубопроводы топливоподачи), Фильтр дизельного топлива, Дополнительные клапаны рядных многоплунжерных ТНВД, Топливоподкачивающие насосы рядных многоплунжерных ТНВД, Применения, Устройство и принцип работы, Насосы ручной прокачки, Предварительный топливный фильтр, Система подачи топлива самотёком, Стандартные рядные многоплунжерные ТНВД «Тип РЕ», Установка и система привода, Устройство и принцип действия, Варианты конструкций ТНВД, Многоплунжерные рядные ТНВД типа РЕ для работы на альтернативных топливах, Работа рядных многоплунжерных ТНВД, Регуляторы и системы автоматического регулирования и управления рядных многоплунжерных ТНВД, Разомкнутые и замкнутые системы управления, Принцип действия регулятора частоты вращения/системы автоматического регулирования, Режимы работы (определения), Формирование регуляторных характеристик, Назначение регулятора/системы автоматического регулирования (управления), Типы регуляторов частоты вращения/систем автоматического регулирования (управления), обзор конструктивных типов регуляторов частоты вращения, Механические регуляторы частоты вращения, Регулировочные устройства, Пневматическое устройство остановки двигателя Тип PNAB, Муфты опережения впрыска топлива, Механизмы электромагнитного привода, Полудифференциальный датчик с кольцом замыкания, Рядные многоплунжерные ТНВД с управляющей муфтой, Устройство и принцип действия, Распылители форсунок, Штифтовые распылители форсунок, Распылители соплового типа, Дальнейшее развитие конструкций распылителей, Форсунки, Стандартные форсунки, Форсунки со ступенчатым упором, Двухпружинные форсунки, Форсунки сдатчиком подъёма иглы распылителя, Линии высокого давления, Арматура соединений линий высокого давления, Трубопроводы линий высокого давления, Электронное управление дизелей, Технические требования, Обзор систем управления, Системные блоки, Рядные многоплунжерные ТНВД, Технология технического обслуживания, Стенды для испытаний ТНВД, Испытание рядных многоплунжерных ТНВД, Испытание форсунок, Аббревиатуры. 154 стр. 70 Mb.


Denso. Common rail system (eng.)
Service manual

В фирменном руководстве Denso Corporation подробно описаны принципы работы, функции, конструкция, диагностика и техническое обслуживание распространенных систем топливоподачи Common Rail. Руководство хорошо иллюстрировано. 6 Mb. 185 стр.


Топливная система дизельных двигателей (rus.)
Техническое обучение VW.

Содержание: Бак для биодизельного топлива, 3 цилиндровый двигатель TDI, Электрический топливный насос, Датчик температуры топлива G81, Топливный насос роторно-пластинчатого типа, Топливный насос двигателя 2,0l TDI, Функционирование топливного насоса, Тандемный тасос, Топливная система с насос-форсунками, Топливная магистраль, Охлаждение топлива, наполнение, предварительный впрыск, Насос-форсунка TDI, 2,0l TDI двигатель, предварительный впрыск, Демпфирование движения иглы, Насос-форсунка TDI, Конец предварительного впрыска, Главный впрыск, продление интервалов сервисного обслуживания (WIV), Управление насос-форсункой, Датчик Холла G40, Насос-форсунка TDI, Сопоставление сигналов (4 цилиндровый двигатель), Сопоставление сигналов (3 цилиндровый двигатель)


Топливная система дизельных двигателей (rus.)
Техническое обучение VW.

Содержание: ТНВД, Блок управления двигателем 2.5l TDI, Системный обзор, Регулирование массы топлива, Датчик хода регулятора G149, Регулирование начала впрыска, Внутренние функции, самодиагностика, Дополнительные сигналы


Топливная система дизельных двигателей (rus.)
Техническое обучение VW.

Содержание: Датчик отсутствия топлива (Reed-контакт), Топливная система, Центробежный насос, Нагнетающий насос, Возможность проверки, VP 44, VP 44 S3, VP 44 S3.5, магнитный клапан с увеличивающейся динамикой, Подача топлива под высоким давлением, Форсунка высокого давления, Обзор системы предстартового подогрева, Обзор системы, Блок управления насосом, Специфические датчики, Датчик температуры масла G8, Регулирование количества топлива, Регулирование начала впрыска, Дополнительные сигналы


Рядные многоплунжерные топливные насосы высокого давления дизелей (rus.)
Учебное пособие Robert Bosch GmbH, 2009. Данная книга является частью серии «Технические инструкции», касающейся методов обеспечения впрыска топлива в дизелях. В ней находит объяснение каждый важный аспект множества конструкций ТНВД и их компонентов, таких как корпусы ТНВД и нагнетательные клапаны, также как и проникновение в принципы их работы. В книге имеются также главы, посвящённые регуляторам частоты вращения и системам автоматического регулирования и управления, описание функциональных режимов, таких как ограничение промежуточной и максимальной частоты вращения, конструктивных типов ТНВД и принципов действия. Приводятся также объяснения устройства и работы таких важных компонентов систем топливоподачи дизелей, как форсунки и распылители форсунок. В главе, посвящённой способам технического обслуживания, описываются методы испытаний и регулировок элементов топливных систем дизелей. Отдельно даются подробные объяснения принципов работы систем электронного управления дизелей (EDC).

Содержание: Обзор топливных систем дизелей, Технические требования, Обзор топливных систем с рядными многоплунжерными ТНВД, Области применения, Типы ТНВД, Состав системы, Регулирование, Система топливоподачи (линия низкого давления), Топливный бак, Топливные линии (трубопроводы топливоподачи), Фильтр дизельного топлива, Дополнительные клапаны рядных многоплунжерных ТНВД, Топливоподкачивающие насосы рядных многоплунжерных ТНВД, Применения, Устройство и принцип работы, Насосы ручной прокачки, Предварительный топливный фильтр, Система подачи топлива самотёком, Стандартные рядные многоплунжерные ТНВД «Тип РЕ», Установка и система привода, Устройство и принцип действия, Варианты конструкций ТНВД, Многоплунжерные рядные ТНВД типа РЕ для работы на альтернативных топливах, Работа рядных многоплунжерных ТНВД, Регуляторы и системы автоматического регулирования и управления рядных многоплунжерных ТНВД, Разомкнутые и замкнутые системы управления, Принцип действия регулятора частоты вращения/системы автоматического регулирования, Режимы работы (определения), Формирование регуляторных характеристик, Назначение регулятора/системы автоматического регулирования (управления), Типы регуляторов частоты вращения/систем автоматического регулирования (управления), обзор конструктивных типов регуляторов частоты вращения, Механические регуляторы частоты вращения, Регулировочные устройства, Пневматическое устройство остановки двигателя Тип PNAB, Муфты опережения впрыска топлива, Механизмы электромагнитного привода, Полудифференциальный датчик с кольцом замыкания, Рядные многоплунжерные ТНВД с управляющей муфтой, Устройство и принцип действия, Распылители форсунок, Штифтовые распылители форсунок, Распылители соплового типа, Дальнейшее развитие конструкций распылителей, Форсунки, Стандартные форсунки, Форсунки со ступенчатым упором, Двухпружинные форсунки, Форсунки сдатчиком подъёма иглы распылителя, Линии высокого давления, Арматура соединений линий высокого давления, Трубопроводы линий высокого давления, Электронное управление дизелей, Технические требования, Обзор систем управления, Системные блоки, Рядные многоплунжерные ТНВД, Технология технического обслуживания, Стенды для испытаний ТНВД, Испытание рядных многоплунжерных ТНВД, Испытание форсунок, Аббревиатуры. 154 стр. 70 Mb.


Техническая брошюра по фильтрам (rus.)
Техническая информация Kolbencshmidt Pierburg AG.
В фирменной технической информации рассмотрены вопросы фильтрации топлива, масла, воздуха. Даны базовые понятия фильтрации. Описаны различные конструкции фильтров, особенности их производства и эксплуатации.


Газобаллонная установка на сжиженном газе BiFuel (rus.)
Устройство и принцип действия. Пособие по программе самообразования. Volkswagen впервые предлагает VW Golf 2009 с двигателем 1,6л 75кВтMPI с серийно устанавливаемой газобаллонной установкой на сжиженном газе. Под сжиженным газом понимается сжиженный попутный нефтяной газ, называемый также пропан-бутан или LPG (Liquified Petroleum Gas).
Все компоненты газобаллонной установки устанавливаются на заводе-изготовителе Volkswagen.

Содержание: Компоненты газобаллонной установки для работы на сжиженном газе, Газобаллонная установка для работы на сжиженном газе, Схема системы, Система управления двигателя, Электрическая схема, Обслуживание.


Ремонт газового редуктора Landi Renzo LSE 98 (rus.)


Пришло время перебрать газовый редуктор 2-го поколения Landi Renzo LSE 98, который к данному моменту отработал 6 лет,
пройдя при этом порядка 100 т.км. Холостой ход практически пропал, для поддержания оборотов приходилось подгазовывать,
расход увеличился на треть, чтобы переключить для работы на газу приходилось ждать более высокой температуры ОЖ, а не так как раньше — 30-40 градусов…


Система питания на природном газе EcoFuel в Volkswagen Touran и Volkswagen Caddy (rus.)
Конструкция и описание модели. Пособие по программе самообразования. Компоненты системы питания на природном газе, Двигатель на природном газе 2,0 / 80 кВт (BSX), Подача топлива, Управление двигателем, Концепция технической безопасности, Функциональная схема, Сервис.


Ремонт двигателя бензонасоса (rus.)
Фотоотчет


Дизельные двигатели: Глава 1. Дизельные двигатели и системы впрыска топлива (rus.)
Полное руководство «Сделай сам».


Дизельные двигатели: Глава 2. Текущее обслуживание. Проверки и регулировки (rus.)
Полное руководство «Сделай сам».


Дизельные двигатели: Глава 3. Детали топливной системы и рекомендации по их замене (rus.)
Полное руководство «Сделай сам».


Дизельные двигатели: Глава 4. Технические данные (rus.)
Полное руководство «Сделай сам».


Дизельные двигатели: Глава 5. Диагностика неисправностей. Блоксхемы. (rus.)
Полное руководство «Сделай сам».


Дизельные двигатели: Глава 6. Инструмент и оборудование (rus.)
Полное руководство «Сделай сам».

Как здесь найти нужную информацию?

Расшифровка заводской комплектации автомобиля (англ.)

Расшифровка заводской комплектации VAG на русском!

Диагностика Фольксваген, Ауди, Шкода, Сеат, коды ошибок.

Если вы не нашли информацию по своему автомобилю — посмотрите ее на автомобили построенные на платформе вашего авто.

С большой долей вероятности информация по ремонту и обслуживанию подойдет и для Вашего авто.

Топливная система авто – это одна из ключевых систем в автомобиле. Её неисправность или неправильная работа могут привести к дорогостоящим ремонтам или перерасходу топлива. Схема топливной системы современных авто состоит из пяти ключевых элементов. Системы дизельного и бензинового двигателя отличаются. Про особенности их конструкций читайте ниже.

Топливная система современного автомобиля — 5 важных конструктивных элементов

Устройство узла

Как ни странно, но схема топливной системы дизеля очень схожа с бензиновыми аналогами. Единственное их различие заключается в системе впрыска. Но об этом немного позже, а пока давайте рассмотрим конструкцию данного узла.

Итак, схема топливной системы предполагает наличие следующих конструктивных элементов:

  • Бензобак. Данный элемент может быть изготовлен из тонколистовой стали либо из очень плотного полипропилена. На легковых автомобилях и внедорожниках бензобак устанавливается на днище. На грузовых машинах, в частности седельных тягачах, он крепится на специальных опорах между задней и передней осью (с левой или с правой стороны). В топливном баке есть клапан, предотвращающий вытекание горючего при опрокидывании транспортного средства.
  • Крышка заливной горловины. Данная деталь имеет особую резьбу, которая дает возможность впуска воздуха при ее откручивании. А для того чтобы водителю удобно было открутить крышку, на ней предусмотрен специальный храповый механизм. Также в данном элементе имеется предохранительный клапан, который при попадании автомобиля в ДТП сбрасывает давление внутри бака. Кстати, на современных машинах со стандартом выхлопов «Евро-2» и более попадание паров топлива в атмосферу не допускается. Поэтому для их улавливания в системе монтируется специальный угольный адсорбер.
  • Топливный насос. Данный элемент имеет электрический привод и располагается внутри бака. Управление насосом осуществляет электронный блок управления. В действие деталь приводится при помощи специального реле. Когда водитель включает зажигание, он работает некоторое время (не более 4-5 секунд), тем самым обеспечивая нужное давление в системе для запуска двигателя. Также стоит отметить, что насос охлаждается бензином. Поэтому работа при пустом баке может вывести его из строя.
  • Топливный фильтр. Зачастую автомобиль снабжается двумя типами данных элементов. Это механизм тонкой и грубой очистки горючего. Сетчатый фильтр монтируется на корпусе топливного насоса. Суть его работы состоит в задержании загрязнений, которые могут попасть в двигатель и образовать лишний нагар. Также исправный фильтр значительно повышает срок эксплуатации насоса, предотвращая его частое загрязнение. Механизм тонкой очистки располагается на днище кузова, перед задней подвеской автомобиля. Данный тип фильтра имеет в своей основе бумажный элемент, который способен задержать мелкие частицы грязи, смол и отложений, которые могут повредить собой топливную систему.

Датчик уровня горючего

Располагается он на модуле насоса. По своей конструкции датчик уровня топлива представляет небольшую систему, состоящую из поплавка и механизма переменного сопротивления с нейлоновым контактом. В зависимости от количества содержимого в баке топлива, сопротивление элемента меняется, что фиксирует стрелка на панели приборов в салоне.

Следует отметить, что датчик бензина не подвергается негативному воздействию некачественных топливных присадок и не ломается при частых перепадах температур и давлении внутри бака.

РЕЖИМЫ РАБОТЫ СИСТЕМЫ ПИТАНИЯ

В зависимости от целей и дорожных условий водитель может применять различные режимы движения. Им соответствуют и определенные режимы работы системы питания, каждому из которых присуща топливно-воздушная смесь особого качества.

  1. Состав смеси будет богатым при запуске холодного двигателя. При этом потребление воздуха минимально. В таком режиме категорически исключается возможность движения. В противном случае это приведет к повышенному потреблению горючего и износу деталей силового агрегата.
  2. Состав смеси будет обогащенным при использовании режима «холостого хода», который применяется при движении «накатом» или работе заведенного двигателя в прогретом состоянии.
  3. Состав смеси будет обедненным при движении с частичными нагрузками (например, по равнинной дороге со средней скоростью на повышенной передаче).
  4. Состав смеси будет обогащенным в режиме полных нагрузок при движении автомобиля на высокой скорости.
  5. Состав смеси будет обогащенным, приближенным к богатому, при движении в условиях резкого ускорения (например, при обгоне).

Выбор условий работы системы питания, таким образом, должен быть оправдан необходимостью движения в определенном режиме.

Форсунки

Эта деталь представляет для автомобиля особую важность, так как именно от ее состояния зависит качество сгорания топливно-воздушной смеси, расход и мощность транспортного средства. Форсунка представляет собой небольшой механизм с электромагнитным клапаном. Последний управляется при помощи ЭБУ. Когда блок управления подает команду на подачу питания к обмотке форсунки, закрытый шариковый клапан открывается, и горючее проходит через пластину в распылители форсунки. Кстати, на пластине имеются отверстия, используемые для регулировки расхода топлива. Горючее впрыскивается форсункой в канал нескольких впускных клапанов. Вследствие этого оно испаряется до поступления в камеру сгорания двигателя.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

Особенности карбюратора

Главное отличие данной топливной системы от инжектора заключается в наличии особого смесеобразователя. Имя ему – карбюратор. Именно в нем происходит приготовление топливно-воздушной смеси. Устанавливается карбюратор на впускном коллекторе. К нему подводится горючее, которое распыляется в дальнейшем при помощи жиклеров и смешивается с воздухом. Готовая смесь подается в коллектор через дроссельную заслонку. Положение последней зависит от уровня нагрузки двигателя и частоты его оборотов. Кстати, схема топливной системы бензинового двигателя представлена на фото ниже:

Как видите, в процессе приготовления и сгорания топливной смеси задействуется очень много электронных датчиков. Особую важность для автомобиля представляет датчик положения дроссельной заслонки и оборотов коленчатого вала.

Отметим также, что схема топливной системы (УАЗ «Буханки» в том числе) карбюраторного типа отличается малым уровнем давления, которое образуется при закачке горючего. Сама же подача бензина в цилиндры двигателя производится самотеком, то есть при понижении давления в камере сгорания при переходе поршня в НМТ.

Система питания бензинового двигателя

В карбюраторном двигателе в качестве топлива применяется бензин. Бензин представляет собой легковоспламеняющуюся жидкость, которая получается из нефти путем прямой перегонки, или крекинга. Бензин является одним из главных компонентов горючей смеси. При нормальных условиях сгорания рабочей смеси происходит постепенное увеличение давления в цилиндрах двигателя. При применении топлива более низкого качества, чем этого требуют технические параметры автомобильного двигателя, скорость сгорания рабочей смеси может увеличиться в 100 раз и составлять 2000 м/с, такое быстрое сгорание смеси называют детонацией. Склонность бензина к детонации условно характеризуется октановым числом, чем выше октановое число бензина, тем менее он склонен к детонации. Бензин с более высоким октановым числом применяют в автомобильных двигателях с более высокой степенью сжатия. Для снижения детонации в бензин добавляют этиловую жидкость.

В цилиндрах автомобильного двигателя рабочий процесс протекает достаточно быстро. Например, если коленчатый вал вращается со скоростью 2000 об./мин., то каждый такт совершается за 0,015 с. Для этого необходимо, чтобы скорость сгорания топлива составляла 25-30 м/с. Однако горение топлива в камере сгорания происходит медленнее. Для того чтобы повысить скорость сгорания, топливо размельчается на мельчайшие частицы и смешивается с воздухом. Установлено, что для нормального сгорания 1 кг топлива необходимо 15 кг воздуха, смесь с таким соотношением (1:15) называется нормальной. Однако при таком соотношении не происходит полного сгорания топлива. Для полного сгорания топлива необходимо больше воздуха и соотношение топлива к воздуху должно быть 1:18. Такая смесь называется обедненной. При увеличении соотношения скорость сгорания резко снижается, и при соотношении 1:20 воспламенения не происходит вообще. Но наибольшая мощность двигателя достигается при соотношении 1:13, в этом случае скорость сгорания близка к оптимальной. Такая смесь называется обогащенной. При таком составе смеси не происходит полного сгорания топлива, поэтому с увеличением мощности увеличивается расход топлива.

При работе двигателя выделяют следующие режимы: 1) пуск холодного двигателя; 2) работа на малой частоте вращения коленчатого вала (режим холостого хода); 3) работа при частичных (средних) нагрузках; 4) работа при полных нагрузках; 5) работа при резком увеличении нагрузки или частоты вращения коленчатого вала (разгон).

При каждом отдельном режиме состав горючей смеси должен быть разным. Система питания двигателя предназначена Для приготовления и подачи в камеры сгорания горючей смеси, кроме этого система питания регулирует количество и состав рабочей смеси.

Система питания карбюраторного двигателя включает в себя следующие элементы: 1) топливный бак; 2) топливопроводы; 3) топливные фильтры; 4) топливный насос; 5) карбюратор; 6) воздушный фильтр; 7) выпускной коллектор: 8) впускной коллектор; 9) глушитель шума выпуска отработанных газов.

На современных автомобилях вместо карбюраторных систем питания все чаще применяют инжекторные системы впрыска топлива. На двигателях легковых автомобилей может быть установлена система распределительного впрыска топлива или система центрального одноточечного впрыска топлива.

Инжекторные системы впрыска топлива имеют ряд преимуществ перед карбюраторными системами питания: 1) отсутствие добавочного сопротивления потоку воздуха в виде диффузора карбюратора, что способствует лучшему наполнению камер сгорания цилиндров и получению более высокой мощности; 2) улучшение продувки цилиндров за счет использования возможности более длительного периода перекрытия клапанов (при одновременно открытых впускных и выпускных клапанах); 3) улучшение качества приготовления рабочей смеси за счет продувки камер сгорания чистым воздухом без примеси паров топлива; 4) более точное распределение топлива по цилиндрам, что дает возможность использования бензина с более низким октановым числом; 5) более точный подбор состава рабочей смеси на всех стадиях работы двигателя с учетом его технического состояния.

Кроме достоинств инжекторная система имеет один существенный недостаток. Инжекторная система впрыска топлива имеет более высокую степень сложности изготовления деталей, а также эта система включает в себя множество электронных компонентов, что приводит к удорожанию автомобиля и к сложности его обслуживания.

Система распределительного впрыска топлива является наиболее современной и совершенной. Основным функциональным элементом этой системы является электронный блок управления (ЭБУ). ЭБУ по существу представляет собой бортовой компьютер автомобиля. ЭБУ осуществляет оптимальное управление механизмами и системами двигателя, обеспечивает наиболее экономичную и эффективную работу двигателя с максимальной защитой окружающей среды на всех режимах.

Система распределительного впрыска топлива состоит из: 1) подсистемы подачи воздуха с дроссельной заслонкой; 2) подсистемы подачи топлива с форсунками по одной на каждый цилиндр; 3) системы дожигания доработанных газов; 4) системы улавливания и сжижения паров бензина.

Кроме управляющих функций ЭБУ имеет функции самообучения, функции диагностики и самодиагностики, а также он закладывает в память предыдущие параметры и характеристики работы двигателя, изменение его технического состояния.

Система центрального одноточечного впрыска топлива отличается от системы распределительного впрыска тем, что в ней отсутствует отдельный для каждого цилиндра (распределительный) впрыск бензина. Подача топлива в этой системе осуществляется при помощи центрального модуля впрыска с одной электромагнитной форсункой. Регулировка подачи топливовоздушной смеси осуществляется дроссельной заслонкой. Распределение рабочей смеси по цилиндрам осуществляется, как и в карбюраторной системе питания. Остальные элементы и функции данной системы питания такие же, как и в системе распределительного впрыска.

Особенности инжектора

Схема топливной системы («Мерседес е200» в том числе) инжекторного типа имеет принципиальное отличие от карбюраторного аналога:

  • Во-первых, топливо из бака в ней подается на рампу, к которой подсоединены форсунки-распылители.
  • Во-вторых, воздух в камеру сгорания двигателя подается через специальный дроссельный узел.
  • В-третьих, уровень давления, создаваемый насосом в системе, в разы больше того, который создает карбюраторный механизм. Это явление объясняется необходимостью обеспечения быстрого впрыска горючего форсункой в камеру сгорания.

Но не только этим отличается от карбюратора инжекторная топливная система. «Шевроле Нива» (схема его топливной указана на фото ниже), как и другие современные авто, имеет в своем распоряжении так называемые «электронные мозги», то бишь ЭБУ. Последний отвечает за сбор и обработку информации со всех существующих датчиков в автомобиле.

Так вот, ЭБУ также управляет впрыском бензина. В зависимости от режима работы электроника самостоятельно определяет, какую именно смесь нужно подать в цилиндр – бедную или обогащенную. Но не только этим отличается схема топливной системы («Форд Транзит» CDi в том числе) инжекторного типа. Она может иметь разное количество распылителей. Об этом мы расскажем в следующем разделе.

Типы систем подачи топлива в двигатель

В зависимости от конструкции автомобиля, его года выпуска и типа горючего материала, на котором он работает, топливные системы имеют свои отличия.

По типу топлива:

  • бензиновые;
  • дизельные.

Это интересно: Плёнка для тонировки стёкол автомобиля: классификация, производители и 9 этапов тонировки своими руками
Конструкция этих топливных систем кардинально различается и об их особенностях читайте ниже.

Бензиновые в свою очередь разделяются на:

  • карбюраторные;
  • инжекторы.

В современных автомобилях карбюраторные подачи топлива почти не встречаются. В большинстве стоят именно инжекторы. Но авто, выпущенные 10 — 15 лет назад оснащались карбюраторами, поэтому принцип работы таких систем мы тоже разберём.

Топливная система карбюраторных двигателей

По конструкции карбюратор состоит из корпуса, поплавковой камеры, клапанов, жиклеров, смеси образующей камеры. В карбюраторной системе топливный насос устанавливается один — малого давления. Устанавливается он в моторном отделении, недалеко от карбюратора. Насос накачивает топливо в поплавковую камеру. Своё название эта камера получила за счёт поплавка, который регулирует её наполнение. Если в камере больше топлива, чем нужно, поплавок подымает игольчатый клапан. Игольчатый клапан закрывает подачу топлива в камеру. При недостатке топлива в камере весь процесс происходит наоборот.

Топливная система современного автомобиля — 5 важных конструктивных элементов

Из поплавковой камеры топливо через жиклер, который представляет собой трубочку с малым отверстием, подаётся в камеру смешивания. В этой камере бензин смешивается с воздухом, который в свою очередь поступает из воздухозаборника.

Регулируется подача топлива дроссельной заслонкой, а она тросиком связана с педалью газа в авто. Из карбюратора смесь подаётся в двигатель с помощью обратной тяги от цилиндропоршневой группы. Иными словами, поршень всасывает топливную смесь.

Бывают три вида топливной смеси:

  1. Обогащённая. В составе этой смеси увеличенное количество топлива и уменьшенный объём воздуха. Это приводит в свою очередь к перерасходу топлива. Такую смесь применяют при запуске двигателя автомобиля. Регулируется это с помощью так называемого «подсоса». После прогрева двигателя смесь необходимо сделать нормальной и убрать «подсос».
  2. Нормальная. В составе смеси нужное количество топлива и воздуха. Это иными словами золотая середина.
  3. Обеднённая. В этой смеси количество воздуха больше нужного, а топлива меньше. Это влечёт за собой уменьшение расхода и мощности. Машина будет с трудом подниматься на горки, особенно гружёная. Скорость станет значительно меньше.

Регулируется качество смеси на карбюраторе болтом. Вообще стоит сказать, что на карбюраторе есть винт холостого хода и качества смеси. Именно винтом качества смеси и регулируется её состав.

Если нет понимания, как регулировать, то лучше доверить это дело профессионалу. Эта работа очень точная и здесь нужны навыки.

Это интересно: Внутренний ШРУС на автомобилях «Мазда 3—6»

Одна из самых частых проблем карбюраторных типов систем — это как раз самостоятельная регулировка. Бывают ситуации, что дело вовсе не в настройках, а, например, в поломанном игловом клапане. Из-за переполнения поплавковой камеры расход увеличивается, а автолюбители начинают крутить винты смеси образователя. Это не приводит ни к чему.

Особенности топливной системы инжекторного двигателя

Несхожесть инжекторного типа двигателя и карбюраторного в следующем. Топливный насос создает высокое давление и подаёт горючее на топливную рампу, а с неё через форсунки в двигатель. Регулирует подачу топлива, его количество и качество блок управления.

Делать какие-то регулировки возможно только через специальный компьютер. Кроме того, блок управления не даст сигнала на подачу топлива, если хотя бы один датчик в автомобиле вышел из строя. На панели будет выдаваться ошибка с названием. По названию ошибки можно расшифровать, какой именно датчик вышел из строя.

Схема топливной системы дизельного двигателя

В дизельном двигателе топливная система отличается от бензиновой. Воспламенение топливной смеси происходит вследствие сжатия воздуха и его нагрева. В таких системах не применяются свечи для детонации смеси. В дизельных двигателях применяются свечи, но накаливания. Они служат для подогрева топливной системы при пуске. При работе они не нужны.

В дизельной системе есть два топливных насоса. Один из них высокого давления, а другой низкого. Насос низкого давления качает топливо из бака. Насос высокого давления создаёт нужное давление в системе при впрыскивании. Роль распределителя выполняют форсунки, они дозируют количество смеси и определяют её качество. Для проверки износа форсунок есть специальный стенд.

Топливная система современного автомобиля — 5 важных конструктивных элементов

Особенностью дизельного двигателя является отсутствие регулирования качества смеси. Особенно это сказывается зимой при низких температурах. Так же в зимнее время дизель начинает подмерзать. Для того, чтобы этого не случалось, применяют присадки.

Схема впрыска топлива на инжекторных автомобилях

На сегодняшний момент существует два типа инжекторных систем:

  • Моновпрысковые.
  • С распределенным впрыском.

В первом случае подача топлива на все цилиндры осуществляется при помощи одной форсунки. На данный момент моновпрысковые системы почти не используются на современных автомобилях, чего не скажешь про автомобили с распределенным впрыском. Особенность таких инжекторов состоит в том, что для каждого цилиндра установлена своя, индивидуальная форсунка. Такая схема установки весьма надежная, а потому ее используют все современные автопроизводители.

Как работает инжектор?

Принцип работы данной системы очень прост. Топливо из бака под действием насоса подается на рампу (в ней горючее всегда находится под высоким давлением). Далее оно идет на форсунки, через которые осуществляется распыл в камеру сгорания. Стоит отметить, что впрыск происходит не постоянно, а в определенные промежутки времени. Одновременно с подачей горючего в систему поступает воздух. После того как произошло смесеобразование горючего в определенной пропорции, оно поступает в камеру сгорания. Процесс приготовления смеси на инжекторах в несколько раз быстрее, чем на карбюраторных системах. Также отметим, что работу форсунок-распылителей контролирует целый ряд дополнительных датчиков. Только по их сигналу электронный блок дает команду на впрыск топлива. Как видите, схема топливной системы инжекторного типа отличается от карбюраторной. Прежде всего, в ней имеются отдельные форсунки, которые занимаются впрыском горючего в камеру сгорания. Ну а дальше, как и в карбюраторных авто, свеча возбуждает искру и осуществляется цикл сгорания топлива, который потом превращается в рабочий ход поршня.

Common Rail

После значительного ужесточения экологических норм для дизельных силовых установок, система питания моторов, работающих на солярке, подверглась изменениям.

Схема подачи топлива, когда смесь воздуха и горючего поступает в рабочую камеру при атмосферном давлении, стала называться Common Rail. Как результат, за счет такого принципа можно снизить расход и увеличить мощность установки. Кроме того, схема получила широкое применение, благодаря снижению шума и увеличению крутящего момента мотора. На сегодня, каждый второй автомобиль оснащен данной системой.

Однако, как и у каждого механизма, есть и недостатки. Например, для этой системы требуется качественное топливо, небольшое загрязнение способно привести к полной остановке агрегата, поскольку работа форсунок будет заблокирована.

Схема топливной системы дизеля

Система подачи топлива дизельного двигателя имеет свои особенности. Во-первых, подача горючего в камеру сгорания осуществляется форсункой под колоссальным давлением. Собственно, за счет этого и происходит воспламенение смеси в цилиндрах. На инжекторных же двигателях смесь загорается при помощи искры, создаваемой свечой зажигания. Во-вторых, давление внутри системы образует ТНВД (топливный насос высокого давления).

То есть схема топливной системы (МАЗов и КамАЗов в том числе) такова, что для впрыска используются сразу два наоса. Один из них низкого давления, второй – высокого. Первый (его также называют подкачивающим) осуществляет подачу горючего из бака, а второй непосредственно занимается подачей топлива в форсунки.

Ниже представлена схема топливной системы (КамАЗ 5320):

Как видите, здесь используется гораздо больше элементов, чем на карбюраторных авто. Кстати, на некоторых модификациях КамАЗовских двигателей дополнительно устанавливают турбокомпрессор. Последний выполняет функцию снижения уровня токсичности отработавших газов и при этом повышает суммарную мощность ДВС. Такая схема топливной системы (КамАЗ 5320-5410) позволяет нагнетать горючее под более высоким давлением. При этом суммарный расход топлива остается на прежнем уровне.

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива. Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Алгоритм работы

Принцип работы дизельных систем имеет много сложностей, в отличие от инжектора. Схема топливной системы («Форд Транзит» TDI) такова, что горючее при помощи подкачивающего насоса проходит через фильтр тонкой очистки и подается на ТНВД. Там оно под высоким давлением поступает в форсунки, расположенные в головке цилиндров. В нужный момент механизм открывается, и после этого происходит распыл горючей смеси в камере, в которую через отдельный клапан подводится очищенный предварительно воздух. Лишняя часть солярки от насоса высокого давления и форсунок возвращается назад в бак (но уже не через фильтр, а по отдельным каналам — трубкам отлива). Таким образом, схема топливной системы дизельного двигателя более сложна и требует более высокой точности при приготовлении горючей смеси. Соответственно, затраты на обслуживание таких двигателей выше, чем на ремонт инжекторных.

Профилактика топливной системы дизельного двигателя.

Учитывая относительно высокую стоимость обслуживания дизеля, не будет лишним ответить на вопрос — как снизить вероятность поломки топливной системы?

Конечно, несмотря на надежность автомобиля и заботу его владельца, поломки в топливной системе дизельного двигателя явление довольно распространенное. Как правило, нарушение функции системы связано с износом одного из рабочих элементов. Скорость износа, в свою очередь, зависит от качества используемого топлива и своевременного обслуживания. Основной мерой по сохранению работоспособности дизеля и его топливной системы является своевременная диагностика. Как и в любом двигателе, в дизеле имеется ряд расходных элементов и резиновых уплотнителей, которые подлежат замене спустя определенное количество пробега. Если же игнорировать простейшие этапы обслуживания, можно столкнуться с масштабными поломками двигателя, устранение которых потребует и времени и средств.

При долгосрочной эксплуатации агрегата внутри рабочих элементов скапливаются различные примеси. При небольшом засорении особых изменений в работе системы можно и не заметить, а вот при избыточных осадках двигатель начинает терять свою производительность.

Более быстрый износ компонентов топливной системы происходит при активной эксплуатации автомобиля. При этом автолюбитель может самостоятельно выявить засорение топливной системы.

При возникновении осадка в топливной магистрали, можно заметить:

  • Затрудненный запуск двигателя.
  • Постороннее звуковое сопровождение в ходе работы автомобиля. Как правило, при появлении осадка в топливных проводниках, из выхлопной системы начинают доноситься характерные шумы.
  • Неравномерную функцию двигателя.

Вне зависимости от состояния топливной системы и года выпуска транспортного средства, для сохранения срока эксплуатации ДВС стоит выполнять диагностику не реже чем через каждые 7000 км пробега.

Обычно пользователи нашего сайта находят эту страницу по следующим запросам:
электросхема Газон Next, моменты затяжки Газон Next, система питания дизельных двигателей Газон Next, система питания дизельных двигателей Газон Next

Система питания топливом

Общее устройство и работа

Топливная система аккумуляторного типа – CommonRailSystem (CRS) с электронным управлением подачей топлива производства фирмы RobertBosch (Германия).

CRS BOSCH с электронным блоком управления обеспечивает:

  • точную дозировку цикловой подачи топлива для каждого рабочего режима и многофазный впрыск;
  • регулировку углов опережения впрыска топлива в зависимости от частоты вращения, нагрузки, температуры;
  • гибкое регулирование давления впрыскивания топлива в широком диапазоне;
  • легкий пуск двигателя с минимальным выбросом вредных веществ в атмосферу при любых температурных условиях;
  • корректировку процесса топливоподачи в зависимости от условий окружающей среды с целью снижения выбросов вредных веществ;
  • совместимость с электронными системами автомобиля и бортовой системой контроля и диагностики по каналу CAN, обеспечивает диагностику, выполняет функции ограничения скорости, аварийной защиты двигателя, круиз-контроля и дублирования управления от дополнительного органа с пульта оператора.

система питания топливом Газон Next с 2014 года, система питания топливом GAZ Next с 2014 года

Основные узлы топливной системы CommonRail

Топливная система работает следующим образом: топливо из топливного бака через фильтр-отстойникгрубой очистки топлива и охладитель электронного блокауправления 12 засасывается шестеренчатым топливоподкачивающим насосом 6 и под давлением 700…800 кПа (7…8 кгс/см²)подается в фильтр тонкой очистки топлива 1 с очень высокойстепенью очистки, так как система «CommonRail» болеечувствительна к загрязнению, чем системы с обычнымплунжерным топливным насосом. Далее топливо поступает втопливный насос высокого давления 11, который имеет трисекции, каждая из которых запитывается через дозирующееустройство с электроклапаном. Из топливного насоса топливопод давлением поступает в общий топливопровод – накопитель 9(рампу) и далее по индивидуальномутопливопроводу 8подводится к каждой форсунке 6. Форсунки подают топливо поддавлением в камеру сгорания. Продолжительность впрыскиванияопределяется длительностью электрического импульса отэлектронного блока управления двигателя.

Уровень давления топлива в рампе, оптимальный данномурежиму работы двигателя, задается электронным блокомуправления и определяется балансом расхода топлива черезфорсунки и производительностью топливного насоса.

В системе CommonRail давление впрыскивания топливане зависит от момента начала и продолжительностивпрыскивания. Это делает возможным, наряду с основнымвпрыскиванием, от которого зависит крутящий момент дизеля,осуществлять другие фазы впрыскивания:

  • предварительное впрыскивание с незначительнойвеличиной подачи, которое снижает главным образом шумсгорания;
  • дополнительное впрыскивание, позволяющее снизитьуровень эмиссии отработавших газов.

Действительная величина подачи топлива обусловленадавлением и продолжительностью впрыскивания.

Датчики, расположенные на двигателе, передаютинформацию о работе систем на электронный блок управления.

Электронный блок управления использует эту информацию дляуправления впрыском и подачи сигнала о работе других системна приборный щиток и управление исполнительнымимеханизмами, обеспечивающими работу двигателя.

система питания топливом Газон Next с 2014 года, система питания топливом GAZ Next с 2014 года

Схема топливной системы:

  1. фильтр тонкой очистки топлива;
  2. трубка подвода топлива к ТНВД;
  3. трубка подвода топлива к фильтру;
  4. трубка подвода топлива к насосу низкого давления;
  5. электронный блок управления (ЭБУ);
  6. форсунка;
  7. штуцер боковой;
  8. трубки высокого давления;
  9. рампа;
  10. трубка высокого давления подвода топлива к рампе;
  11. ТНВД с насосом низкого давления;
  12. трубка подвода топлива к двигателю

Электронная система управления двигателем обеспечивает самодиагностику работы блока управления, датчиков и некоторых других устройств транспортного средства. При обнаружении отклонений в работе двигателя в кабине транспортного средства загорается диагностическая лампа. В этом случае необходимо обратиться на станцию технического обслуживания для определения причин неисправности.

Внимание:
Топливная аппаратура не подлежит техническому обслуживанию. В случае обнаружения любых неисправностей по топливной аппаратуре необходимо обращаться на сервисные станции.

Фильтр предварительной очистки топлива

Понравилась статья? Поделить с друзьями:
  • Пао северсталь официальный сайт руководство
  • Инструкция giersch mg1 z l n
  • Цераксон для детей сироп цена инструкция по применению
  • Инструкция по применению плана счетов украина
  • Катрен руководство компании