Руководство по инструментальным методам исследований при разработке

Руководство по инструментальным методам исследований при разработке и экспертизе качества лекарственных препаратов

Название: Руководство по инструментальным методам исследований при разработке и экспертизе качества лекарственных препаратов
Автор: Быковский С.Н. (Ред.)
Издательство: Перо
Год: 2014
Cтраниц: 656
Формат: djvu
Размер: 20 мб
Язык: русский

Книга раскрывает многообразие и специфику инструментальных методов анализа как одного из ключевых методов оценки качества лекарственных препаратов. В издании приводится широкий перечень современных высокотехнологичных приборов с предельно четкими характеристиками, которые позволяют обеспечить получение правильных результатов. В данном издании читатели найдут не только теоретические знания, но и познакомятся с практикой применения высокотехнологичных приборов.

Скачать Быковский С.Н. (Ред.) — Руководство по инструментальным методам исследований при разработке и экспертизе качества лекарственных препаратов

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература


Свечкарь В.П.

1

Буданова Н.А

1

Григорьева И.В.

2

Пирогова И.М.

1


1 ГБУ РО «Центр по сертификации и контролю качества лекарственных средств»

2 ГБОУ ВПО РязГМУ Минздрава России

Представлено понятие валидации и ее метрологических характеристик, приведены формулы расчета прецизионности и описана возможность использования методов валидации в фармацевтической практике на примере анализа примесей в спирте этиловом методом газовой хроматографии. Приведены и обобщены результаты анализа спирта этилового на содержание в нем спирта метилового и других токсических микропримесей (пропанола-2) в условиях Испытательной контрольно-аналитической лаборатории ГБУ РО «Центр по сертификации и контролю качества лекарственных средств». Пригодность метода для оценки качества спирта этилового 95 % подтверждена характеристикой «прецизионность», которая включает два показателя – повторяемость и воспроизводимость. Результатом проведенных анализов является разработка Стандартной операционной процедуры «Валидация газохроматографического метода испытаний спирта этилового 95 %».

валидация

прецизионность

повторяемость

воспроизводимость

этиловый спирт

контроль качества

1. Руководство по инструментальным методам исследований при разработке и экспертизе качества лекарственных препаратов / под ред. Быковского С.Н. проф. д.х.н. Василенко И.А., к.м.н. Харченко М.И., к.фарм.н. Белова А.Б., к.фарм.н. Шохина И.Е., к.п.н. Дориной Е.А. – М., Изд-во «Перо», 2014. – С. 27–124, 588–600.

2. ГОСТ Р 51698-2000, изменение № 1 к ГОСТ Р 51698-2000 Водка и спирт этиловый. Газохроматографический метод определения содержания токсичных микропримесей. – М., 2005.

3. ГОСТ Р ИСО 5725-2002 ч. 1–6 Точность (правильность и прецизионность) методов и результатов измерений. – М., 2009.

4. ГОСТ Р ИСО 9000-2008. Системы менеджмента качества. Основные положения и словарь. ISO 9000:2005 Quality management systems – Fundamentals and vocabulary. – М.: Стандартинформ, 2009.

5. Руководство Правила надлежащего производства лекарственных средств для медицинского применения и для ветеринарного применения Таможенного союза (правила надлежащей производственной практики – Good Manufacturing Practice – GMP) Режим доступа:. http://www.aipm.org/upfile/doc/AIPM-GMP_Feb-01-2013.pdf.

6. Фармацевтическая разработка: концепция и практические рекомендации. Научно-практическое руководство для фармацевтической отрасли / под ред. Быковского С.Н. проф. д.х.н. Василенко И.А., проф. к.фарм.н. Деминой Н.Б., к.фарм.н. Шохина И.Е. ,к.х.н. Новожилова О.В., Мешковского А.П., Спицкого О.Р. – М., Изд-во «Перо», 2014. – С. 75–82.

Валидация в соответствии с Правилами GMP – это действия, которые доказывают, что определенная методика, процесс, оборудование, сырье, деятельность или система действительно приводят к ожидаемым результатам [5].

Согласно российского стандарта ГОСТ Р ИСО 9000-2008, понятие валидация определена как подтверждение посредством представления объективных свидетельств того, что требования, предназначенные для конкретного использования или применения, выполнены [4].

Основой для проведения процедуры валидации служат методы статистической обработки результатов анализа, достаточно популярно изложенные применительно к области фармации в ряде публикаций [1, 6], на которые и опираются авторы данной статьи.

Валидация метода контроля качества – это процесс установления характеристик метода, показателей его эффективности и определения его ограничений [6]. Главной задачей валидации аналитической методики является экспериментальное доказательство того, что данная методика пригодна для достижения тех целей, для которых она предназначена. При валидации аналитических методов в фармации в основном используют такие метрологические характеристики, как прецизионность, точность, воспроизводимость, повторяемость, правильность, чувствительность, устойчивость, линейность.

Основной характеристикой аналитических методик для количественного определения лекарственных средств и количественной оценки примесей является прецизионность.

Прецизионность является общим термином для выражения изменчивости повторяющихся измерений. Согласно ГОСТ прецизионность – это степень близости друг к другу независимых результатов измерений, полученных в конкретных регламентированных условиях [3].

Прецизионность аналитической процедуры выражает близость значений (степень разброса) между сериями измерений, полученных в результате многократного анализа одного и того же образца при заданных условиях.

Она выражается как коэффициент вариации в % (относительное стандартное отклонение, %RSD) для статистически значимого количества образцов (n ≥ 10).

sv01.wmf, (1)

где S – среднеквадратическое отклонение экспериментальных величин,

sv02.wmf – концентрация анализируемого вещества (среднее значение).

Среднеквадратичное отклонение от среднего (стандартное отклонение выборки, S) является мерой рассеяния (дисперсии) результатов измерений и рассчитывается по формуле (2):

sv03.wmf, (2)

где xi – результат эксперимента.

В измерениях принято использовать несколько типов прецизионности, в частности таких, как: повторяемость (сходимости, r) и воспроизводимость (R) результатов.

Повторяемость выражает прецизионность при одинаковых рабочих условиях на протяжении короткого промежутка времени, то есть является мерой прецизионности при выполнении ряда условий:

– работает один и тот же исследователь,

– используется один и тот же прибор,

– используется один и тот же метод,

– анализы выполняются в течении короткого промежутка времени,

– используется идентичный объект испытания,

– исследования проводятся в одной и той же лаборатории.

Мерой повторяемости является стандартное отклонение повторяемости (Sr ) и предел повторяемости (r). Предел повторяемости (сходимости) – это значение, которое с доверительной вероятностью 95 % не превышается абсолютной величиной разности между результатами двух измерений (или испытаний), полученными в условиях повторяемости (сходимости).

sv04.wmf, (3)

где f – коэффициент критического диапазона.

Величина f (коэффициент критического диапазона) зависит от доверительного уровня вероятности и закона распределения случайной величины. Для пределов воспроизводимости и повторяемости доверительный уровень вероятности составляет 95 %, и в ГОСТ Р ИСО 5725 делается допущение, что лежащее в основе распределение является приближенно нормальным. Для нормального распределения на уровне вероятности 95 % коэффициент равен 1,96 [3].

Воспроизводимость результатов выражает прецизионность, оцененную по результатам, полученным разными исследователями (внутрилабораторная) или в разных лабораториях (межлабораторная) при выполнении ряда условий:

– работают разные исследователи,

– используется один и тот же метод,

– используется идентичный объект испытания,

– исследования проводятся в одной и той же (внутрилабораторная) или разных лабораториях.

При внутрилабораторных испытаниях прецизионности наблюдения осуществляются в одной и той же лаборатории, но при этом один или несколько факторов – «время», «оператор» или «оборудование» – могут меняться. При установлении прецизионности метода измерений очень важно точно определить соответствующие условия наблюдения, т.е. должны ли быть три вышеупомянутых фактора неизменными или нет. Внутрилабораторные испытания в различные моменты времени учитывают влияние изменения условий окружающей среды и перекалибровки оборудования между наблюдениями. Если в условиях повторяемости наблюдения осуществляются при неизменности всех внутрилабораторных факторов, то в условиях воспроизводимости эти факторы наоборот изменчивы. Если наблюдения выполняются в различных лабораториях, проявляются дополнительные эффекты, являющиеся следствием различия между лабораториями (в административном управлении, материально-техническом обеспечении, проверке стабильности наблюдений и т.д.).

Мерой воспроизводимости является стандартное отклонение воспроизводимости (SR ) и предел воспроизводимости (R = 2,77 SR).

Необходимость рассмотрения прецизионности по ГОСТ Р ИСО 5725-2002 [3] возникает из-за того, что измерения, выполняемые на предположительно идентичных материалах, при предположительно идентичных обстоятельствах, не дают, как правило, идентичных результатов. Это объясняется неизбежными случайными погрешностями, присущими каждой измерительной процедуре, а факторы, оказывающие влияние на результат измерения, не поддаются полному контролю. При практической интерпретации результатов измерений эта изменчивость должна учитываться. Различия между результатами измерений, выполняемых разными операторами и/или с использованием различного оборудования, как правило, будут больше, чем между результатами измерений, выполняемых в течение короткого интервала времени одним оператором с использованием одного и того же оборудования.

Как применяются методы валидации в фармацевтическом анализе, можно проанализировать на примере анализа спирта этилового, который осуществляется в соответствии с ГОСТ Р 51698-2000, изм.1 «Газохроматографический экспресс-метод определения содержания токсичных микропримесей» [2].

Целью исследования является:

– доказательство пригодности метода для оценки качества лекарственных средств в соответствии с требованиями нормативных документов в условиях Испытательной контрольно-аналитической лаборатории ГУЗ «Центр сертификации и контроля качества лекарственных средств Рязанской области»;

– определение характеристики прецизионность, которая включает два показателя: повторяемость и воспроизводимость;

– разработка Стандартной операционной процедуры (СОП) «Валидация газохроматографического метода испытаний спирта этилового 95 %».

Газохроматографический метод применяется для анализа летучих веществ, либо веществ, которые могут быть переведены в парообразное состояние. В газовом хроматографе происходит разделение токсических микропримесей, содержащихся в спирте этиловом и последующее их детектирование пламенно-ионизационным детектором. В нашем случае применяется метод абсолютной градуировки, основанный на предварительном определении зависимости между количеством введенного вещества и площадью пика на хроматограмме. Полученная хроматограмма служит основой для качественного и количественного анализа токсических микропримесей в спирте этиловом.

Определение показателя «Повторяемость» выполняется одним провизором-аналитиком путем анализа 10 проб одного и того же образца трех серий спирта этилового 95 %.

Определение показателя «Воспроизводимость» оценивается по результатам анализов, выполненными параллельно двумя провизорами-аналитиками путем анализа 10 проб одного и того же образца трех серий спирта этилового 95 %.

Для примера приведены результаты испытания одной серии спирта этилового одним аналитиком по количественному содержанию метанола (табл. 1) и пропанола-2 (табл. 2) в анализируемом образце. По результатам испытаний проведён расчет среднеквадратичного отклонения (Sr) и коэффициента вариации ( %RSD). Результаты остальных испытаний по показателю повторяемости сведены в табл. 3. Результаты испытаний по показателю воспроизводимости сведены в табл. 4, по результатам испытаний проведён расчет среднеквадратичного отклонения (SR) и коэффициента вариации ( %RSD).

Таблица 1

Результаты анализа одного образца этилового спирта 95 % на содержание метанола, проведенные одним провизором-аналитиком

№ анализа

Содержание метанола, об. %, xi

sv05.wmf

sv06.wmf

1

1,8275*10-3

– 0,0395*10-3

0,00156*10-6

2

1,8444*10-3

0,0226*10-3

0,000511*10-6

3

1,7779*10-3

0,089*10-3

0,007921*10-6

4

1,9315*10-3

– 0,0645*10-3

0,00416*10-6

5

1,8158*10-3

0,0512*10-3

0,002621*10-6

6

1,9028*10-3

– 0,0358*10-3

0,001282*10-6

7

1,986*10-3

– 0,119*10-3

0,014161*10-6

8

1,8702*10-3

– 0,0032*10-3

0,00001*10-6

9

1,8275*10-3

0,0395*10-3

0,00156*10-6

10

1,8670*10-3

– 0,019*10-3

0,000361*10-6

sv07.wmf

sv08.wmf

sv09.wmf

sv10.wmf

Заключение: коэффициент вариации ( %RSD) для 10 измерений по метанолу составил 3,3 %, что соответствует требованиям ГОСТ (не более 5 %) [3].

Таблица 2

Результаты анализа одного образца этилового спирта 95 % на содержание пропанола-2, проведенные одним провизором-аналитиком

№ анализа

Содержание пропанола-2, мг/дм3, xi

sv11.wmf

sv12.wmf

1

2,88*10-4

0,12*10-4

0,014*10-8

2

2,82*10-4

0,06*10-4

0,003*10-8

3

2,68*10-4

– 0,085*10-4

0,007*10-8

4

2,6*10-4

– 0,16*10-4

0,025*10-8

5

2,77*10-4

0,008*10-4

0,00006*10-8

6

2,8*10-4

0,066*10-4

0,004*10-8

7

2,79*10-4

0,028*10-4

0,00008*10-8

8

2,84*10-4

0,077*10-4

0,006*10-8

9

2,66*10-4

0,097*10-4

0,009*10-8

10

2,75*10-4

0,01*10-4

0,00009*10-8

sv13.wmf

sv14.wmf

sv15.wmf

sv16.wmf

Заключение: коэффициент вариации (RSD) для 10 измерений по содержанию пропанола-2 составил 11,6 %, что соответствует требованиям ГОСТ (не более 5 %) [3].

Таблица 3

Результаты расчета по показателю «повторяемость» (сходимость) испытаний по каждой из серий спирта этилового 95 % по содержанию метанола и пропанола-2

условный

№ серии

№ аналитика

%RSD по содержанию метилового спирта

%RSD по содержанию

других токсических микропримесей

1

1

3,3

4,6

2

1

4,9

5,0

3

1

4,8

2,9

1

2

4,7

4,2

2

2

3,5

4,8

3

2

2,4

3,2

Заключение: коэффициенты вариации (RSD) по метиловому спирту и по содержанию других токсических микропримесей соответствует ГОСТ (не более 15 %) [3].

Аналогично произведен расчет по содержанию пропанола-2, коэффициент вариации ( %RSD) составил 5,79 % что соответствует требованию ГОСТ – должен быть не более 7 % [3].

Из результатов испытаний, проведенных двумя аналитиками в одной и той же лаборатории на одном и том же приборе, следует, что показатели повторяемости (сходимости) и воспроизводимости не превышают указанные пределы, установленные ГОСТ.

Повторная валидация обычно проводится при изменении условий проведения метода и по истечении определенного промежутка времени, в данном случае организация установила срок проведения повторной плановой валидации через пять лет.

Таблица 4

Результаты расчета по показателю «воспроизводимость» по одной из серий спирта этилового 95 % по содержанию метанола

Испытатель

Содержание спирта метилового, %

(среднее из 10 анализов), sv02.wmf

sv18.wmf

sv19.wmf

Аналитик № 1

1,867*10-3

– 0,005*10-3

0,000025*10-6

Аналитик № 2

1,877*10-3

0,005*10-3

0,000025*10-6

sv20.wmf

sv21.wmf

sv22.wmf

sv23.wmf

Заключение: коэффициент вариации ( %RSD) составил по метанолу
0,38 % , что соответствует требованию ГОСТ – должен быть не более 6 %
[3].

Выводы

Пригодность метода для оценки качества спирта этилового 95 % в соответствии с требованиями нормативных документов (ОФС) в условиях Испытательной контрольно-аналитической лаборатории ГУЗ «Центр сертификации и контроля качества лекарственных средств Рязанской области» подтверждена характеристикой «Прецизионность», которая включает два показателя – повторяемость и воспроизводимость. Разработана Стандартная операционная процедура (СОП) «Валидация газожидкостного метода испытаний спирта этилового 95 %», обеспечивющая надежность результатов и пригодная для целей определения качества спирта этилового.


Библиографическая ссылка

Свечкарь В.П., Буданова Н.А, Григорьева И.В., Пирогова И.М. ИСПОЛЬЗОВАНИЕ ВАЛИДАЦИИ В ФАРМАЦЕВТИЧЕСКОЙ ПРАКТИКЕ НА ПРИМЕРЕ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В СПИРТЕ ЭТИЛОВОМ // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 7-2.
– С. 263-267;

URL: https://applied-research.ru/ru/article/view?id=7006 (дата обращения: 25.04.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

РАЗРАБОТКА И ВАЛИДАЦИЯ МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ДЕСМЕТИЛСИБУТРАМИНА МЕТОДОМ ГЖХ С ПЛАМЕННО-ИОНИЗАЦИОННЫМ ДЕТЕКТИРОВАНИЕМ

  • Авторы
  • Резюме
  • Файлы
  • Ключевые слова
  • Литература


Стерн К.И.

1

Малкова Т.Л.

1


1 ГБОУ ВПО «Пермская государственная фармацевтическая академия» Минздрава России

Статья посвящена проблеме неконтролируемого употребления сильнодействующих веществ (сибутрамина и его структурных аналогов, метаболитов десметилсибутрамина и дидесметилсибутрамина) в биологически активных добавках к пище. В научной литературе отсутствует какая-либо информация по контролю БАД на наличие сильнодействующих веществ, в то время как в практике судебно-химических исследований имеются факты обнаружения данных веществ в данных продуктах. В связи с этим возникла необходимость усовершенствования процедуры обнаружения сильнодействующих веществ методами качественного и количественного анализа. Разработана методика определения десметилсибутрамина методом газо-жидкостной хроматографии с пламенно-ионизационным детектированием. Аналитическая область методики составила 10 – 1000 мкг/мл. Методика валидирована по показателям линейность, правильность, прецизионность и обладает хорошей воспроизводимостью. Данная методика может использоваться в соответствующих аналитических лабораториях.

валидация

психоактивные вещества

десметилсибутрамин

количественный анализ

газо-жидкостная хроматография

1. Валидация методов контроля качества // Руководство по инструментальным методам исследований при разработке и экспертизе качества лекарственных препаратов / под ред. Быковского С. Н. и др. – М. : Перо, 2014. – Разд. 3.3. – С. 80-116.

2. Единые санитарно-эпидемиологические и гигиенические требования к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю) : [Электронный ресурс] // Евразийская экономическая комиссия. – Режим доступа : http://www.tsouz.ru/KTS/KTS17/Pages/P2_299.aspx. – Загл. с экрана (дата обращения: 24.07.14).

3. Об утверждении списков сильнодействующих и ядовитых веществ для целей статьи 234 и других статей Уголовного кодекса Рос. Федерации, а также крупного размера сильнодействующих веществ для целей статьи 234 Уголовного кодекса Рос. Федерации [Электронный ресурс]: постановление Правительства Российской Федерации от 29 декабря 2007 года № 964 // Информационно-правовой портал Гарант. – Режим доступа : http://base.garant.ru/12158202/. – Загл. с экрана (дата обращения: 21.10.14).

4. Сыромятников, С. В. Криминалистическое исследование препаратов, содержащих сибутрамин / С. В. Сыромятников, И. И. Сарычев, Е. А. Гайдукова // Судебная экспертиза. – 2008. — № 4. – С. 61-67.

5. Brain serotonin transporter occupancy by oral sibutramine dosed to teady state: a pet study using 11C-DASB in healthy humans / P. S. Talbot еt al.// Neuropsychopharmacology. – 2009. – Р. 1-11.

6. BTS 54525, A Monoamine uptake inhibitor exhibiting potent actions in models predictive of potential antidepressant activity / W. R. Buckett et al. // British Journal of Pharmacology. – 1987. — № 90. – Р. 94.

7. Identification of N-desmethylsibutramine as a new ingredient in Chinese herbal dietary supplements / Blachut D. et al. // Problems of Forensic Sciences. – 2007. – LXX. – P. 225-235.

8. Simultaneous determination of sibutramine and N-di-desmethylsibutramine in dietary supplements for weight control by HPLC-ESI-MS / Ziqiang Huang et al. // Journal of Chromatographic Science. – 2008. — № 46. – P. 707-711.

Проблема злоупотребления психоактивными веществами в России из года в год становится все более актуальной. В последнее время участились случаи обнаружения сибутрамина и его активных метаболитов (М1 и М2) в биологически активных добавках для похудения (БАД). Федеральная Служба РФ по контролю за оборотом наркотиков в Методических рекомендациях по криминалистическому исследованию сибутрамина от 2006 г. сообщала, что, с учетом дофаминовой теории формирования наркологических заболеваний, сибутрамин может вызывать привыкание и зависимость, а клинические описания его действия позволяют предположить использование его потребителями психоактивных веществ в качестве психостимулятора [4]. С 2008 года сибутрамин, а также его структурные аналоги, обладающие схожим психоактивным действием, включены в список сильнодействующих веществ для целей статьи 234 и других статей Уголовного кодекса Российской Федерации [3].

Сибутрамин метаболизируется изоферментом CYP3А4 до деметилированных метаболитов M1 и М2 (моно- и дидесметилсибутрамин), которые обуславливают его терапевтический эффект и являются структурными аналогами сибутрамина [6, 7, 8]. Установлено, что десметилсибутрамин (ДМС) и дидесметилсибутрамин (ДДМС) примерно в 100 раз активнее исходного соединения [5, 8].

Согласно действующему законодательству РФ, сильнодействующие вещества и их аналоги запрещены к использованию в составе БАД [2]. Ввиду сложившейся ситуации вопрос об усовершенствовании процедуры обнаружения посторонних токсикологически важных веществ, не заявленных в составе БАД, стоит достаточно остро. Однако на сегодняшний день в литературных источниках отсутствует какая-либо информация по процедуре контроля БАД на наличие сильнодействующих веществ, в то время как в практике судебно-химических исследований имеются факты обнаружения данных веществ в биологически активных добавках к пище.

Цель исследования

Разработка методики количественного определения активного метаболита сибутрамина, ДМС, методом газо-жидкостной хроматографии (ГЖХ).

Материал и методы исследования

Субстанцию ДМС получали из содержимого капсул «Жуйдэмэн» (500 мг, № 60), содержащих данное вещество, при комнатной температуре следующим образом: содержимое капсул высыпали в чистую стеклянную склянку, залили спиртом этиловым 95% (1:10), встряхивали в течение 15 минут, затем надосадочную жидкость сливали в чистую стеклянную склянку. Оставшийся осадок вновь заливали спиртом этиловым 95% и операции повторяли. Надосадочные жидкости объединяли и выпаривали без нагревания до сухого остатка. Получившийся сухой остаток брался из расчета, что его состав соответствует экстракту содержимого одной капсулы. После перекристаллизации экстракт был проанализирован на газовом хроматографе Agilent 7890A с масс-спектрометром Agilent 5975C, в результате чего была идентифицирована и подтверждена его химическая структура: масс-спектр пика со временем удерживания 13,18 мин соответствовал библиотечному масс-спектру ДМС (рис. 1).

Рисунок 1. Хроматограмма перекристаллизованного экстракта (верхняя часть рисунка), масс-спектр пика с временем удерживания 13,18 мин (средняя часть рисунка) и библиотечный масс-спектр десметилсибутрамина (нижняя часть рисунка).

Готовили растворы ДМС в этиловом 96 % спирте в концентрациях 1 мг/мл, 500 мкг/мл, 200 мкг/мл, 100 мкг/мл, 50 мкг/мл и 10 мкг/мл. В качестве внутреннего стандарта использовали раствор метилстеарата в 96 % этиловом спирте в концентрации 1 мг/мл.

Исследование проводили на газовом хроматографе Хроматэк-Кристалл 5000 с пламенно-ионизационным детектором в следующих условиях: колонка HP-5MS, скорость потока газа-носителя (азот) 2,3 мл/мин, температура термостата колонки начальная 170 °С, конечная – 220 °С, температура детектора 250 °С, температура испарителя 230 °С, ввод пробы с делением потока 1/3, объем вводимой пробы 1 мкл, время хроматографирования 18 мин.

Результаты исследования и их обсуждение

Количественное определение ДМС осуществляли методом ГЖХ с расчетом концентрации по методу внутреннего стандарта, в качестве которого был выбран метилстеарат, преимуществами использования которого являются его хроматографические свойства, близкие к определяемому веществу, стабильность полученных результатов, и доступность для закупки на территории РФ.

Время удерживания ДМС и метилстеарата в заданных условиях хроматографирования составило 7,07 мин и 10,93 мин соответственно (рис. 2).

Рисунок 2. Хроматограмма раствора ДМС с внутренним стандартом (метилстеарат) в концентрации 1000 мкг/мл.

Валидацию разработанной методики осуществляли по показателям: линейность, правильность, прецизионность (на уровне intra-day и inter-day), аналитическая область [1].

Линейность

Для определения линейности проводили анализ 6 калибровочных спиртовых растворов ДМС с концентрациями от 10 мкг/мл до 1000 мкг/мл в присутствии внутреннего стандарта (1000 мкг/мл) (табл. 1).

Таблица 1

Значения концентраций калибровочных растворов и отношений площадей пиков ДМС к площадям пиков метилстеарата

СДМС, мкг/мл

СМС, мкг/мл

SДМС

SМС

SДМС/ SМС

Si

Sср

Si

Sср

Si

Sср

10

1000

49,919

46,512

8319,833

7752,000

0,0060

0,0060

45,663

7610,500

0,0060

43,954

7325,667

0,0060

50

1000

193,912

200,776

6002,845

6078,020

0,0323

0,0330

211,794

6310,256

0,0336

196,621

5920,958

0,0332

100

1000

303,652

405,149

5855,909

7692,778

0,0519

0,0526

489,749

9227,440

0,0531

422,047

7994,986

0,0528

200

1000

677,061

678,460

5732,946

5754,650

0,1181

0,1179

681,875

5808,131

0,1174

676,443

5722,872

0,1182

500

1000

1550,308

1870,566

5834,157

6914,314

0,2660

0,2703

2129,204

7808,231

0,2730

1932,187

7100,553

0,2720

1000

1000

3814,719

3619,324

6320,993

5998,512

0,6035

0,6034

3286,095

5446,867

0,6033

3757,157

6227,676

0,6033

*СДМС – концентрация десметилсибутрамина в растворе, СМС – концентрация метилстеарата в растворе,

SДМС – площадь пика ДМС, SМС – площадь пика метилстеарата.

По полученным значениям строили график линейной зависимости. Были рассчитаны коэффициенты регрессионной прямой у = 0,0006х методом наименьших квадратов, где у – среднее значение отношения площади пика ДМС к площади пика метилстеарата, рассчитанное по трем хроматограммам, х – концентрация ДМС, мкг/мл (Сфакт). (рис. 3).

Рисунок 3. Калибровочный график зависимости отношения площади пика ДМС к площади пика метилстеарата от концентрации ДМС в растворе

Квадрат линейного коэффициента корреляции (R2) характеризует степень соответствия между регрессионной моделью и исходными данными. В данном случае 99,68% изменений зависимой переменной описывается регрессионным уравнением. Коэффициент корреляции R = 0,9984, что свидетельствует о наличии прямой линейной зависимости между площадью пика ДМС и его концентрацией в растворе.

Правильность и прецизионность

Для оценки правильности и прецизионности методики проводили анализ 3 калибровочных спиртовых растворов ДМС с концентрациями 10 мкг/мл, 200 мкг/мл, и 1000 мкг/мл в течение первого дня (intra-day) и второго дня (inter-day). Каждый раствор хроматографировали в трех повторностях. Для полученных значений концентрации ДМС рассчитывали величину стандартного отклонения (SD), относительного стандартного отклонения (RSD, %) и отклонение от заданной величины (ε, %). Данные представлены в таблицах 2 и 3.

Таблица 2

Оценка правильности и прецизионности (intra-day)

Сфакт, мкг/мл

Сизм, мкг/мл

Сср (n=3)

SD (n=3)

RSD, % (n=3)

ε, %

10

10,03

10,04

0,01

0,12

0,40

10,03

10,05

200

196,85

197,08

0,24

0,12

1,46

197,33

197,07

1000

1005,83

1005,61

0,19

0,02

0,56

1005,50

1005,50

*Сфакт – фактическая концентрация ДМС в растворе, Сизм – концентрация ДМС в растворе, рассчитанная по методике.

Таблица 3

Оценка правильности и прецизионности (inter-day)

Сфакт, мкг/мл

Сизм, мкг/мл

Сср (n=3)

SD (n=3)

RSD, % (n=3)

ε, %

10

9,87

9,91

0,05

0,52

0,90

9,90

9,97

200

195,33

195,61

0,56

0,29

2,19

195,25

196,25

1000

1007,83

1007,81

0,28

0,03

0,78

1007,52

1008,08

*Сфакт – фактическая концентрация ДМС в растворе, Сизм – концентрация ДМС в растворе, рассчитанная по методике.

Полученные значения RSD и ε свидетельствуют о достаточной степени соответствия между истинным значением определяемого вещества и его значением, рассчитанным по данной методике.

Аналитическая область методики

Аналитическая область методики на основании результатов оценки линейности, правильности и прецизионности составила 10 – 1000 мкг/мл.

Заключение

Разработана методика количественного определения десметилсибутрамина методом газовой хроматографии с пламенно-ионизационной детекцией, обладающая необходимой линейностью, правильностью и прецизионностью, что позволяет говорить о хороших валидационных характеристиках данной методики.

Рецензенты:

Вихарева Е.В., д.фарм.н., доцент, заведующий кафедрой аналитической химии ГБОУ ВПО ПГФА Минздрава России, г. Пермь;

Ярыгина Т.И., д.фарм.н., профессор кафедры фармацевтической химии факультета очного обучения ГБОУ ВПО ПГФА Минздрава России, г. Пермь.


Библиографическая ссылка

Стерн К.И., Малкова Т.Л. РАЗРАБОТКА И ВАЛИДАЦИЯ МЕТОДИКИ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ДЕСМЕТИЛСИБУТРАМИНА МЕТОДОМ ГЖХ С ПЛАМЕННО-ИОНИЗАЦИОННЫМ ДЕТЕКТИРОВАНИЕМ // Современные проблемы науки и образования. – 2014. – № 6.
;

URL: https://science-education.ru/ru/article/view?id=15483 (дата обращения: 25.04.2023).


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

Понравилась статья? Поделить с друзьями:
  • Руководств по судебной психиатрии ткаченко
  • Швейная машина чайка 142 м инструкция по эксплуатации видео
  • Обязанности руководства тсж
  • Диван босс контакты руководства
  • Ufi gel p инструкция на русском языке