Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.
Конденсатор.
Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.
У конденсатора основной параметр — это ёмкость.
Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).
Типы конденсаторов.
Конденсаторы бывают постоянной и переменной емкости.
У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.
Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.
Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.
Резистор.
Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.
Резисторы бывают постоянные и переменные.
Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.
Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете
, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.
Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.
В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.
Полупроводниковые приборы.
Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.
Диоды.
У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.
Стабилитроны.
Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.
Транзисторы.
Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.
Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.
Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзисторы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.
А.Зотов
Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»
ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:
П О П У Л Я Р Н О Е:
- Защита и сервис кондиционеров (сплит-систем)
- Особенности, устройство и подключение джакузи
- Секреты ремонта телефонов.
Сервис кондиционеров (сплит-систем) своими руками
Почти в каждом доме или квартире есть системы кондиционирования, т.е. кондиционеры и сплит-системы. Стоят они недешево, поэтому хороший сервис кондиционеров, включающий в себя системы защиты кондиционеров и их самодиагностики должен в первую очередь способствовать повышению надежности их работы.
Подробнее…
Раньше гидромассажная ванна или Джакузи (как часто её называют по названию фирмы, которая раньше производила гидромассажные ванны), была очень дорогостоящей. В настоящее же время большинство людей может позволить себе понежиться в ванной со струйками воды и бурлящими пузырьками воздуха.
Подробнее…
PANASONIC KX-TC408RU-B
Неисправность: Звонок работает, только если телефон лежит на базе или если во время звонка нажать любую кнопку.
Устранение: Проверить кварцы на процессоре трубы: на запуск в дежурном режиме и на частоту. Проверить уровень сигнала зарядки на процессоре, не пропайки ножек процессора и его обвязки. Проверить кварцевый резонатор на процессоре. Подробнее…
Популярность: 54 045 просм.
Многие, имея в своем распоряжении много радиодеталей, предпринимают попытки извлечь из них золото. Ведь давно известно, что золото лучше всего проводит электричество, поэтому его в незначительных количествах используют для изготовления различных радиодеталей. Особенно это касается микросхем, в них доля золота больше.
В интернете встречаются разные фото добычи золота из радиодеталей, на котором запечатлен процесс, и его результаты. Способов известно несколько, но рассмотрим те, которые подходят для домашнего применения.
Как определить золото
Отделить золото от других металлов в радиоэлементах не так просто, это долгий и опасный процесс. Металл проходит стадию рафинирования, отделяется от примесей. Аффинаж золота из радиодеталей в домашних условиях возможен, если соблюдать все правила безопасности.
Тому, кто в первый раз решился добыть золото, стоит знать, что после растворения всех элементов в кислоте о наличии там драгоценного металла можно только догадываться. Визуально его не заметить, результат будет виден только после завершения всех процедур.
Где искать драгметалл?
Золото в микросхемах присутствует обязательно, его можно распознать, внимательно рассмотрев контакты. Все что имеет характерный желтый оттенок, сгодится для травления. Драгметаллом покрывают контакты с целью повысить срок их службы. Специалистов интересуют его антикоррозийные свойства, инертность и отсутствие склонности к окислению.
Но детали микросхем могут содержать не только Au, при внимательном изучении можно обнаружить платину и серебро.
Так в каких деталях содержится золото и где его искать?
- Обнаружить драгметалл можно в материнской плате компьютера, в платах мобильных телефонов и смартфонов, планшетов и других гаджетов.
- Можно отыскать некоторое количество благородного металла в телевизорах, особенно если речь идет о черно-белых устройствах времен СССР. Но и в современных моделях есть небольшое количество Au.
- Для аффинажа подойдут не только детали техники, но и корпуса часов, покрытые слоем позолоты, браслеты и даже столовые приборы (ложки, вилки и ножи).
- Но наибольшее количество Au можно обнаружить в радиодеталях, по этой причине их чаще всего используют при проведении аффинажа (извлечения драгметалла в домашних условиях).
- Незначительное количество есть и в сим-картах, но золота там настолько мало, что непонятно, сколько точно нужно взять симок, чтобы получить небольшой кусочек благородного металла в результате.
Можно использовать любые детали, которые в составе содержат золото, но если есть сомнения по поводу наличия в той или иной технике металла, стоит изучить паспорт. В этом документе есть информация о том, содержится ли Au в приборе и где именно его стоит искать.
Но перед тем как приступить к самой процедуре, необходимо будет немного поработать. Следует очистить все контакты, части микросхем и деталей, в которых есть Au, от ненужных частиц. Особую угрозу представляет пластмасса, она может повлиять на чистоту золота и в итоге после травления качество металла будет очень низким.
Как извлечь золотое напыление
Стоит отметить, что детали с желтым окрасом не всегда содержат золото. Многие хотят знать, в каких радиодеталях есть золото?
Чаще оно встречается в различных микросхемах, а так же транзисторах, диодах, стеклянных электродах, реле тоже имеют его напыление.
Перед добычей благородного металла нужно приготовить правильные пропорции реактивов. Далее все золотосодержащие элементы нужно промыть, не оставляя следов грязи.
Проделывать процедуру извлечения придется с опасными кислотами, которые представляют реальную угрозу жизни для человека. Поэтому инструкция, по извлечению золота из радиодеталей начинается с правила безопасности.
Какие радиодетали содержат золото?
Транзистор серии КТ содержит в себе драгоценный сплав металла
Таких радиодеталей много. В иностранных деталях аналогично используется этот металл, но в меньших количествах. Основная информация о радиодеталях, входящих в состав того или иного блока содержится в паспорте на устройство. Информация по драгметаллам находится и в специализированных справочниках по радиотехнике.
Драгметалл содержится в таких микросхемах и радиодеталях, как:
- транзисторы серии КТ (117, 630, 312, 602, 603, 605, 608, 3102, 844А, 911, 920, 2Т907);
- микросхемы 133, 155 серий;
- диоды типа Д226.
Какой химический реактив использовать
Добывать золото дома можно при помощи царской водки. Кто впервые слышит это название, может подумать, что это спиртной напиток, но спирт не способен растворять металлы.
Царская водка состоит из соляной и азотной кислот. Для ее получения нужно в определенной пропорции смешать два реагента. Если взять литр концентрированного азотного реагента, и добавить в него до 300 мл соляной кислоты, то получится царская водка.
Добычу золота с помощью кислот необходимо проводить в стеклянной таре. Приготовление нужного раствора следует осуществлять в холодной среде, это значит, что посуда, где смешиваются реагенты, должна располагаться в ледяной воде. В этой процедуре требуется крайняя осторожность и неспешность. Далее раствор следует медленно перемешать.
Растворять металлы в полученной смеси можно подогрев ее до 60-70 гр. Затем можно помещать радиоэлементы в жидкость, но делать это нужно не спеша, лучше не взбалтывать. Чтобы раствор дольше оставался чистым, не стоит в него погружать посторонние предметы или грязные детали.
Отделение позолоты от радиодеталей помощью электролиза
В фарфоровой или стеклянной термостойкой посуде с крышкой готовят раствор из 1 литра дистиллированной воды и 50 граммов цианистого калия. На роль окислителя (катода) подойдут пластины из железа или серебра.
На другой электрод-восстановитель (анод) подвешиваются предварительно очищенные радиодетали с позолотой и опускаются в ёмкость с раствором. После этого включается подача постоянного тока – 12-15 В. Во время реакции нельзя открывать крышку, т.к. выделяемые пары токсичны. Золото осядет на катоде в виде тонкой плёнки, которую нужно соскрести с пластины.
Какие опасности и результаты
Чтобы извлечь золото из радиодеталей своими руками нужно ждать 6 часов, пока химические процессы не растворят все элементы. В это время бурно выделяется оксид азота, это токсичный дым желтого цвета, который представляет серьезную опасность для человека. Один вдох этого газа способен привести к потере сознания. При плохой вентиляции возможен летальный исход!
После растворения элементов нужно приступать к следующим процедурам. Золотого осадка в жидкости не будет видно, металлы в ней растворятся до состояния молекул.
Чтобы собрать драгметалл в единое целое воспользуемся гидразином. Он встречается в виде порошка и жидкости. Для завершения процедуры его нужно 250-300 гр, он добавляется в емкость с царской водкой. В результате должен образоваться коричневый осадок. Внешне похож он на ржавчину, если отсутствует, золота в деталях не использовалось.
Раствор процеживают, а хлопья очищают в царской водке, пока золото не приобретет свой должный вид.
Обратите внимание!
-
-
Зачем нужны интерьерные куклы
- Как выбрать туфли, не выходящие из моды?
Еще один способ извлечения Au из микросхем
Этот метод извлечения потребует терпения, поскольку вся процедура займет не менее семи дней. На неделю нужно «замочить» детали в растворе соляной кислоты и перекиси водорода в пропорции 2:1. Детали, помещенные в раствор, периодически следует помешивать, используя палочку из стекла.
Если все правила будут соблюдены, то через неделю раствор изменит цвет, он станет мутным, а на дне емкости появятся хлопья золота небольшого размера. Тогда смесь перекиси водорода и кислоты фильтруют, в результате чего удается получить порошок.
Крупицы золота настолько хрупкие, что их можно легко превратить в песок легким движением пальцев.
Привычные свойства Au приобретет только после переплавки. Чтобы песок превратился в слиток, его необходимо переплавить в тигле. Изначально рекомендуют тигель обработать бурой, но некоторые любители химии предпочитают добавлять этот элемент во время плавления, а не перед началом процедуры.
Еще тигель обрабатывают баркасом, чтобы снизить температуру плавления драгметалла. Поскольку золото плавится при температуре 1063° C, обработка необходима, так как температура плавления выше, чем та, которую выдает горелка.
Преимущества домашней золотодобычи
Существует множество тематических статей и форумов, которые гласят об эффективных методах заработка на домашней золотодобыче. И хоть изначально такая идея может показаться бессмысленной, в условиях плохой экономической ситуации в стране даже такое занятие может стать хорошим источником дополнительного дохода.
Для предстоящего стартапа нужно всего лишь несколько составляющих, а именно:
- Соответствующие детали и микросхемы.
- Химические составы.
- Усердность и желание потрудиться.
Затраченные усилия могут оправдываться высокой стоимостью золота, которое практически никогда не проседает в цене и является стабильной валютой. Естественно, ставить на золотодобычу в домашних условиях слишком высокие ставки нецелесообразно. Сначала необходимо убедиться, что такая сфера деятельности может быть перспективной в конкретном регионе, взвесить массу плюсов и минусов, а также посоветоваться с профессионалами.
Также нужно понимать, что закупку драгоценных металлов осуществляют только официально зарегистрированные компании, имеющие соответствующие лицензии. Обычные скупщики лома не будут готовы платить адекватную цену за самодельно добытое золото.
Кроме этого, аффинаж и рафинирование драгметаллов разрешены только в крупных компаниях специализированного назначения, которые регламентируются правительственными органами. Без получения официальных разрешений такая деятельность будет незаконной. А при несоблюдении законов любопытный энтузиаст может получить серьезный штраф, а также попасть под санкции и лишиться всей собранной техники.
В любом случае нельзя забывать о том, что в домашних мастерских и старых антресолях имеется множество недешевых вещей, которые могут представлять собой настоящую ценность. Некоторые из них находятся непосредственно под носом, но мало кто знает об их ценности. И чтобы научиться добывать драгоценный металл из якобы ненужного мусора, следует тщательно рассмотреть существующие методы такой золотодобычи, ознакомиться с общим принципом и всеми подводными камнями, а также правильно выполнять все действия из инструкции.
Сбор и операции с радиодеталями
Занимаясь рециклингом, можно не выполнять полный цикл работ:
- Сбор сырья.
- Сортировку и первичную обработку.
- Извлечение золота и аффинаж.
- Плавку и реализацию слитков.
Сотрудничество со специализированной компанией даёт возможность ограничиться теми работами, которые позволяют условия. Многие энтузиасты – индивидуалы ограничиваются только сбором и сортировкой радиодеталей.
Вот несколько каналов поиска и сбора такого сырья:
- сбор на бесхозных заброшенных промышленных и прочих объектах;
- сбор у населения.
На фото выше изображены некоторые детали, содержащие золото, а в таблице приведен их список с некоторыми усреднёнными по России ценами на них:
Тип радиодеталей | Стоимость единицы веса или количества, руб. |
Микросхема 153УД1 новая | 36,1 руб заштуку |
Микросхема 153УД1 б/у | 25,05 руб за штуку |
Микросхема М85 новая | 129,52 руб за штуку |
Микросхема М85 б/у | 111,36 руб за штуку |
Транзисторы КТ301, 306, 312, 316 новые | 26,90 руб за штуку |
Транзисторы КТ301, 306, 312, 316 б/у | 18,00 руб за штуку |
Транзисторы КТ930, 958, 960, 970 новые | 90,67 руб.за штуку |
Транзисторы КТ930, 958, 960, 970 б/у | 74,96 руб за штуку |
Лампа ГС-36Б | 196,47 руб за штуку |
Лампа ГМИ-29Б-1 | 7 841,04 руб заштуку |
Золото есть не только в радиодеталях. О том, где еще можно его найти, читайте здесь.
Радиодетали, в которых можно найти драгоценный металл
Как открывают месторождения? Золотодобытчики начинают разработку территории в том случае, когда в тонне породы находят хотя бы 1 грамм драгоценного металла. Совсем другое дело – поиск драгоценного металла в радиодеталях.Так, в одной микросхеме желтого металла может содержаться от 1 до 5 %. Им же покрыты выводы детали, которые заключены в корпус из керамики. В транзисторах процент золота немного меньший – от 0,2 до 1%. Также из него изготовлена подложка, которая располагается под проводником.
Абсолютный рекорд в категории «содержание золота в радиодеталях» принадлежит конденсаторам. Размер этого устройства соответствует масштабам 3-литровой банки, а золота в одной такой детали может содержаться до 8 граммов. Также в конденсаторах можно найти около 50 граммов серебра. Но здесь есть один нюанс – такие дорогие конденсаторы применялись только в военной технике, которую на данный момент найти довольно сложно.
Небольшое количество драгоценного металла содержится в радиолампах – он нанесен на сетку, которая расположена рядом с катодом. Последний при работе лампы нагревает сетку, которая под воздействием тепловой энергии начинает выделять электроны, что приводит к нарушению функциональности прибора. Именно для этого и необходимо золотое напыление, которое предотвращает деталь от перегрева. Золотое напыление можно встретить также и на ножках осветительных приборов, но это относится исключительно к механизмам и устройствам старого образца.
Электролиз
Электролиз применяется, когда ведется добыча золота из электродеталей. Этот способ считается более сложным в сравнении с методом выпаривания.
Однако электролиз позволяет получить золото с меньшим количеством разнообразных примесей.
Процесс добычи протекает следующим образом:
- Стеклянную емкость заполняем серной либо соляной кислотой в количестве достаточном, чтобы в ней поместились заготовленные микросхемы.
- В емкость помещаем две железные или свинцовые пластины. В процессе электролиза они будут играть роль катода. В качестве анода в данном методе используются микросхемы, из которых выделяется драгметалл.
- При помощи медной проволоки соединяются обе пластины.
- После подсоединения медной проволоки в емкость опускаем приготовленные микросхемы. Далее через нее пропускаем электрический ток – не более 0,8 ампер на каждые 1 кв.дм площади.
- В процессе электролиза драгоценный металл постепенно оседает на пластинах. После того как они приобрели желтый оттенок, ток отключается.
В завершение необходимо снять золото с металлических пластин. Для этого нужно воспользоваться методом вытравливания. В случае если процесс протекает медленно либо количества оседаемого золота недостаточно, необходимо увеличить величину тока.
Обе технологии не требуют значительных временных и денежных затрат. При наличии достаточного количества микросхем они позволяют неплохо заработать. Итогом всех работ станет золото, имеющее в своем составе много примесей. Для их удаления можно воспользоваться методом, известным как аффинаж. Он предполагает применение различных кислот, посредством которых из драгметалла удаляются сторонние элементы.
Если в процессе электролиза использовались советские радиодетали, то аффинаж позволяет в итоге получить материал 999 пробы.
Электролиз и вытравливание – это два наиболее эффективных и относительно простых способа получения драгоценного металла дома. Обе технологии не требуют серьезной подготовки. При этом в ходе вытравливания металла необходимо соблюдать правила безопасности и исключать контакт кожи с кислотами.
Тонкости аффинажа
Современные технологии настолько развиты, что с их помощью можно проводить самые различные действия и достигать превосходных результатов. В качестве примера можно взять аффинажное производство, которое позволяет эффективно обрабатывать разные драгоценные металлы, очищая их от ненужных примесей и добавок.
Под аффинаж могут попадать следующие объекты:
- Ювелирные изделия в виде лома.
- Концентрированные металлы.
- Шлиховое золото.
- Металлические отходы.
Сам процесс представляет собой ряд специфических действий, которые предназначаются для добычи высококачественного золота. Комплекс состоит из нескольких стадий очистки, позволяющих полностью избавить драгметалл от сторонних компонентов, придав ему наивысшее качество и внешний вид. Процедура осуществляется с применением двух способов:
- Химического.
- Электролитического.
Первый вариант подразумевает использование специальных составов и активно используется в ювелирных компаниях. Многие энтузиасты успешно очищают золото от отходов химическим методом и в домашней мастерской. Главное — соблюдать основные правила и не допускать взаимодействия открытых частей тела с опасным веществом.
Для реализации химического аффинажа следует задействовать специальный раствор из сульфата железа или сернокислого железа, которые разводятся в воде при соблюдении определенной пропорции. Также ювелиры могут задействовать жидкость под названием «царская водка», которая эффективно удаляет примеси с золота. Для очистки можно использовать даже обычную перекись водорода.
Обработка металла
Выше было сказано, что по окончании процесса вытравливания в полученный металл необходимо добавить буру и соду. Применение этих веществ позволяет исключить потери материала на следующем этапе обработки и добиться красивого блеска, который будет испускать готовый слиток.
Далее полученная смесь помещается в тигель и нагревается посредством муфельной печи или горелки. Сам тигель должен иметь небольшой носик, через который расплавленный металл заливается в специальные формы.
В ходе обработки полученного золота необходимо использовать стальные или чугунные изделия.
Кроме того, в процессе литья необходимо добиться того, чтобы металл тек тонкой и непрерывной струей. В конце золото должно остыть до комнатной температуры. Только после этого можно разбирать литейную форму.
В итоге получается материал с шероховатой поверхностью. Теперь его необходимо обработать и придать нужный вид. Полировка материала ведется посредством специальных паст и мягкой ветоши. Для этого, например, подойдут войлок и зубная паста.
Начало изучения радиотехники начинающими
Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:
- Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
- Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
- Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.
Понятие электрической схемы
Электрическая схема — это совокупность графических элементов, описывающая порядок их соединения и взаимодействия.
Там также могут обозначаться механические связи, например, между реле и его контактами. Электрические схемы упрощают сборку, наладку и проверку собранных по ним устройств.
Разновидности электросхем
На практике применяется несколько видов электрических схем:
- простые;
- монтажные;
- однолинейные;
- многолинейные.
Первый тип самый распространенный. Основные компоненты и порядок их присоединения друг ко другу указываются на простых схемах (ПС). Кроме того, по ним проверяется правильность сборки. На монтажных (МС) диаграммах показано расположение деталей на плате или внутри корпуса. Полилинейные схемы используют для изображения трехфазных цепей.
Основы радиоэлектроники
Для начала посмотрим на обыкновенную пальчиковую батарейку. На ней можно прочитать, что у неё напряжение 1,5 В. Давайте проверим.
Для этого понадобится мультиметр, то есть цифровой измерительный прибор. Вначале стоит обзавестись более дешевой моделью, обязательно с ручным выбором диапазона измерения.
Измерение напряжения
- черный провод подключить к разъему «COM»;
- подключите красный провод к разъему для измерения напряжения «V» (Подключение проводов другим способом может повредить измеритель);
- установите ручку на нужное деление — раз ожидаем получить значение примерно 1,5 В, то установим ручку на значение 20 в диапазоне DCV или V (прямая линия у буквы V означает постоянное напряжение);
- металлическими наконечниками проводов мультиметра касается полюсов батареи, но какой конец к какому? Попробуйте обе комбинации — результат должен быть одинаковым, только один раз оно отображается как «положительное» число, в других случаях ему предшествует минус. Для нас это не имеет значения, с вольтметром тоже ничего не случится;
- читаем значение — в данном случае напряжение новой батарейки 1,62 В;
- выключаем мультиметр (не забывайте, а то сядет батарея).
Измерение напряжения аккумуляторной батареи 1,5 В: а) красный наконечник измерителя касается плюса аккумуляторной батареи — положительный результат; b) красный наконечник измерителя касается минуса батареи — отрицательный результат с минусом перед цифрами.
Внимание! При проведении измерений, чтобы не повредить прибор всегда устанавливаем диапазон измерения на значение, превышающее максимальный результат, который ожидаем получить! Если не знаем чего ожидать, то самый безопасный вариант — установить измеритель на максимально возможный диапазон и уменьшить его потом до максимально точного измерения.
Давайте проверим и другие батарейки / аккумуляторы. Для тестов выбрали: заряженный аккумулятор 1,2 В размера AA — 1,34 В, NiMH аккумулятор частично разряжен — 1,25 В.
Теперь поместим наши 4 батареи в корпус общий, так называемый холдер. Затем вставьте концы проводов аккумуляторной сборки в отверстия макетной платы, как показано на фото ниже:
Батарейный отсек: а) пустой, b) со вставленными батареями, c) подсоединенный к плате
Следующим шагом будет подготовка перемычек, то есть короткие провода, которые будут соединять отдельные компоненты на макетной плате. Для этого достаточно отрезка компьютерного кабеля, кусачки или острый нож.
Компьютерный кабель: а) изолированный, b) после снятия изоляции
Сначала снимите изоляцию с провода. Внутри найдете более тонкие провода, скрученные вместе. Следующим шагом будет отрезание кусочка провода необходимой длины, удаление небольшого, примерно 1 см, фрагмента изоляции с обоих его концов, и все готово. Обратите внимание, что провода в кабеле компьютера тонкие и легко ломаются, с ними нужно обращаться осторожно и часто не гнуть.
a) клещи, b) провод со снятой изоляцией, c) готовые перемычки
Если что, можете купить готовый набор перемычек. Их большим преимуществом является то, что не нужно делать самому, и они сделаны из более толстой проволоки, которая не так легко ломается.
Обломанный конец провода
Вне зависимости от того какие перемычки выберете: ручной работы или готовые, подготовим контактную пласту к дальнейшей работе. Потребуются 4 коротких перемычки (для подключения шин, распределяющих напряжение по плате) и две более длинные, желательно красная и синяя для питания.
Макетная плата с перемычками, соединяющими шины распределения напряжения
Теперь соберем свою первую схему на макетке. Возьмите резистор 22 кОм (красные / красные / оранжевые / золотые полосы). Каково его фактическое сопротивление? Проверим мультиметром.
Измерение сопротивления
- черный провод подключить к разъему «COM»;
- красный провод подключите к разъему красного цвета;
- установите ручку переключателя — ожидаем получить значение примерно 22 кОм, поэтому установите на значение 200 кОм;
- металлические концы проводов мультиметра касаются выводов резистора (неважно каким концом какой вывод);
- считаем значение — для этого резистора сопротивление 22.1 кОм;
- выключаем прибор (не забывайте).
Измерьте сопротивление резистора омметром
Как и в случае с батареями, здесь значение, измеренное мультиметром, отличается от номинала проверяемого элемента. Золотая полоса на резисторе означает допуск 5%.
22 кОм х 5% = 1.1 кОм
Следовательно, диапазон сопротивления для этого резистора может составлять от 20,9 кОм до 23,1 кОм. Теперь подключим пласту, батареи в холдере и резистор, как на фото ниже:
Электронная схема простейшая подключена к макетной плате
В электронике схемы используются для иллюстрации соединений между отдельными элементами. В нашем случае это будет выглядеть так:
Электрическая схема простейшая
Символ, обозначенный как B1, — это батарейки, обеспечивающие общее напряжение 4 x 1,5 В = 6 В. А 22 кОм резистор помечен символом R1. По закону Ома:
I = U / R
I = 6 В / 22 кОм
I = 6 В / 22000 Ом
I = 0,000273A
I = 273 мкА
Теоретически ток в схеме должен составлять 273 мкА. Но что сопротивление резистора может изменяться в пределах 5%. Напряжение обеспечивается батареями также не номинальные 6 В, и оно будет зависеть от уровня заряда батареи. Давайте рассмотрим фактическое напряжение, обеспечиваемое 4 батареями по 1,5 В.
Измерение напряжения
- черный провод подключить к разъему «COM»;
- красный провод подключите к разъему «V»;
- устанавливаем ручку переключения — ожидаем получить значение около 6 В, поэтому устанавливаем ручку на значение 20 в диапазоне DCV или V-, при необходимости включаем прибор, который должен показывать 0;
- металлическими щупами проводов мультиметра касаемся проводов аккумуляторного держателя (в зависимости от того, каким концом к какому проводу прикасаемся, результат будет положительным или отрицательным);
- считаем значение — напряжение аккумуляторной сборки 6.50 В;
- выключаем питание.
Измерение напряжения аккумуляторной сборки
Подставим измеренные значения в формулу, полученную из закона Ома:
I = U / R
I = 6.5V / 22.1k Ом
I = 6,5 В / 22100 Ом
I = 0,000294A
I = 294 мкА
Попробуем проверить, получим ли этот результат, измерив ток мультиметром.
Измерение тока
- черный провод подключить к разъему «COM»;
- красный провод подключить к разъему «мА»;
- устанавливаем ручку — ожидаем получить значение 294 мкА, поэтому устанавливаем на значение 2000 мкА в диапазоне A-, при необходимости включаем прибор, который должен показывать 0;
- Для проведения измерения сначала отключите схему, потому что весь ток должен протекать через измеритель полностью — коснитесь металлических концов проводов мультиметра, штырей перемычки, подключенной к положительному полюсу, и ножек резистора, подключенного к отрицательному полюсу;
- считаем значение — ток 294 мкА;
- выключаем прибор.
Измерение тока в схеме
А далее простая схема, показывающая различия в подключении вольтметра и амперметра к тестируемой схеме:
Схема подключения вольтметра и амперметра к тестируемой схеме
Итак, вы научились измерять напряжение, ток и сопротивление с помощью мультиметра, а также собрали первую схему на макетной плате. Теперь добавим больше резисторов и проверим как это повлияет на ток и напряжение. Начнем со сборки в соответствии со схемой ниже:
Схема, состоящая из источника напряжения и 3-х резисторов
- B1 — это по-прежнему холдер батареек с 4 АА, каждая с номинальным напряжением 1,5 В (для простоты назовём его одной батареей)
- R1 — резистор 22 кОм (красные / красные / оранжевые / золотые полосы)
- R2 — резистор 10 кОм (коричневый / черный / оранжевый / золотые полосы)
- R3 — резистор 2,2 кОм (красные / красные / красные / золотые полосы)
Обратите внимание, что у каждого резистора одна и та же буква, меняется только номер рядом с ним. А как бы обозначили резисторы на схеме, если бы все 3 имели одинаковое сопротивление? Как и на схеме выше — каждому элементу будет свой порядковый номер. Это правило при маркировке электронных схем — каждый элемент одного типа имеет одинаковый буквенный символ, а номер рядом с ним отличается.
Вернемся к схеме, если уже нашли резисторы, соберём схему на макетной плате. Всё выглядит так:
Схема состоит из батареи и 3 резисторов, соединенных на плате
Во-первых, посмотрим какое напряжение подает аккумулятор в схему. Возьмем измеритель, подготовленный для измерения напряжения, с ручкой, установленной на 20 В. Приложим щупы измерителя по обе стороны от батареи B1:
Слева: схема подключения мультиметра, справа: мультиметр, измеряющий напряжение на обеих сторонах аккумуляторной батареи
Эта батарея подает в схему 6,02 В. Теперь измерим реальное сопротивление каждого из резисторов, использованных в эксперименте. Получили результаты: 21,9 кОм, 10 кОм и 2,23 кОм соответственно. Какой ток в цепи? Попробуем сначала посчитать:
I = U / R
Символ U означает напряжение, подаваемое в цепь аккумулятором. А символ R — это сумма сопротивлений всех электронных компонентов, то есть резисторов, поэтому:
R = U / (R1 + R2 + R3)
I = 6,02 В / (21,9 кОм + 10 кОм + 2,23 кОм)
I = 6,02 В / 34,13 кОм
I = 6,02 В / 34130 Ом
I = 0.000176 = 176 мкA
Теперь измерим реальную силу тока мультиметром:
Измерение тока в схеме
Проведём измерение, прикоснувшись к красному выводу батареи красным щупом, а черный провод первого резистора — черным. Как видно на картинке, ток точно такой же, как рассчитали выше: 176 мкА. Вы можете попробовать измерить ток подключив измеритель к другому месту в схеме, например между резисторами R3. Вы получите все время один и тот же результат. Сила тока в нашей схеме везде одинакова. Помните сравнение силы тока с напором воды? Наш «водяной ток» течет от одного конца батареи, последовательно через все резисторы, к другому выводу батареи, поэтому ток (протекающая вода) такой же везде.
Давайте проследим что происходит с напряжением в схеме. Аккумулятор дает напряжение 6,02 В, а ток во всей схеме составляет 176 мкА. Рассчитаем падение напряжения на каждом резисторе. Как обычно помогут закон Ома и формула I = U / R. Падение напряжения на резисторе R1, сопротивление которого 22 кОм:
U = I х R
U = 176 мкА х 21.9 кОм
Чтобы избежать путаницы, проведём преобразование единиц измерения:
U = 0.000176 A х 21900 Ом
U = 3.85 В
Падение напряжения на резисторе R2, сопротивление которого 10 кОм:
U = I х R
U = 176 мкА х 10 кОм
U = 0.000176 A х 10000 Ом
U = 1.76 В
Падение напряжения на резисторе R2, сопротивление которого составляет 2,2 кОм:
U = I x R
U = 176 мкА х 2,23 кОм
U = 0,000176 А х 2230 Ом
U = 0,39 В
Обратите внимание, что чем больше сопротивление данного резистора, тем выше падение напряжения на нем.
Теперь проверим какое напряжение получим, приложив щупы мультиметра непосредственно перед и после следующих резисторов:
Слева: схема подключения мультиметра, справа: мультиметром измерение напряжения на обеих сторонах резистора R1
Слева: схема подключения мультиметра, справа: мультиметр измерения напряжения на обеих сторонах резистора R2
Слева: схема подключения мультиметра, справа: мультиметр, измеряющий напряжение на обеих сторонах резистора R3
Измеритель обнаружил определенное падение напряжения на каждом резисторе:
UR1 = 3,83 В
UR2 = 1,75 В
UR3 = 0,39 В
UR1 + UR2 + UR3 = 5,97 В
UB1 = 6,02 В
Сумма падений напряжения на отдельных резисторах практически равна напряжению, подаваемому на батарею. Теоретически напряжения UB1 и UR1 + UR2 + UR3 должны быть равны друг другу, но практика обычно немного отличается от этого. В этом случае разница, вероятно, связана с неточностью измерений. Также следует помнить что резисторы — не единственное сопротивление току. Провода, по которым протекает ток, тоже имеют небольшое сопротивление.
В любом случае мы экспериментально пришли ко второму закону Кирхгофа, который гласит: сумма напряжений источника в цепи постоянного тока равна сумме напряжений нагрузки.
Итак, мы проверили и рассчитали ток и напряжение в цепи, в которой резисторы включены последовательно. Напоминаем, что такое подключение показано на схеме:
Схема цепи, в которой резисторы включены последовательно
Последовательное соединение — это соединение при котором отдельные компоненты соединяются последовательно один за другим. Известно что:
- во всей такой схеме сила тока постоянна, независимо от того, где ее измеряем.
- общее сопротивление — это сумма сопротивлений отдельных резисторов Rc = R1 + R2 + R3.
- сумма падений напряжения на отдельных резисторах равна напряжению батареи U B1 = U R1 + U R2 + U R3.
Рассмотрим схему, в которой резисторы включены параллельно. И начнем со схемы компоновки. Отметки на схеме будут соответствовать значениям элементов:
- B1 — это холдер для батареек, номинальное напряжение на каждом элементе 1,5 В, всего 6 В
- R1 — резистор 22 кОм (красные / красные / оранжевые / золотые полосы)
- R2 — резистор 10 кОм (коричневый / черный / оранжевый / золотые полосы)
- R3 — резистор 2,2 кОм (красные / красные / красные / золотые полосы)
Соберем схему на макетной плате. Каким будет полное сопротивление Rс всех резисторов в цепи? Прежде чем ответить на этот вопрос, обратите внимание что только R1 и R2 подключены параллельно. Вначале будем иметь дело только с ними. Формула общего сопротивления параллельно соединенных резисторов такова:
R 1,2 = (R1 х R2) / (R1 + R2)
R 1,2 = (22 кОм x 10 кОм) / ( 22 кОм + 10 кОм)
R 1,2 = 220 кОм / 32 кОм
R 1,2 = 6,9 кОм
R 1,2 = 6900 Ом
Суммарное сопротивление R1 и R2 составляет 6,9 кОм. Теперь снова посмотрим на схему — резисторы R1 и R2 включены последовательно по отношению к резистору R3. Упрощение схемы позволит выделить:
Последовательные этапы преобразования схемы: а) вид исходной схемы, b) схема эквивалентной схемы после замены двух ветвей одной замещающей ветвью с сопротивлением R1.2, c) схема эквивалентной цепи после замены резисторы R1.2 и R3 с резистором Rc.
Обратите внимание, что при замене исходной принципиальной схемы эквивалентное напряжение и ток в непреобразованной части схемы должны оставаться неизменными.
Возвращаясь к теме: поскольку резисторы R1 и R2 соединены параллельно и последовательно с резистором R3, достаточно добавить сопротивление R 1.2, рассчитанное только что с помощью резистора R3, чтобы получить общее сопротивление Rc:
Rc = [(R1 * R2) / (R1 + R2)] + R3
Rc = R 1,2 + R3
Rc = 6,9 кОм + 2,2 кОм
Rc = 9,1 кОм
Rc = 9100 Ом
Мы знаем как рассчитать полное сопротивление схемы. Помните, что рассчитали его на основе номинальных значений сопротивления используемых резисторов. В качестве упражнения предлагаем рассчитать фактическое полное сопротивление в вашей схеме таким же образом (после измерения сопротивления всех резисторов с помощью мультиметра). Для данного случая это 9,1 кОм.
Для расчета силы тока необходимо знать напряжение, подаваемое аккумулятором:
Слева: схема подключения мультиметра, справа: измерение напряжения на обеих сторонах аккумуляторной батареи
В этой схеме аккумулятор, то есть источник напряжения, обеспечивает схему напряжением 6,10 В. Рассчитаем ток I:
I = U / Rc
I = 6,10 В / 9100 Ом
I = 0,00067 А = 0,67 мА = 670 мкА
Теперь посмотрим на напряжение в схеме, разместив щупы измерителя в разных местах:
Слева: схема подключения мультиметра; справа: измерение падения напряжения на резисторе R1
Слева: схема подключения мультиметра; справа: измерение падения напряжения на резисторе R2
Слева: схема подключения мультиметра; справа: измерение падения напряжения на резисторе R3
Батарея подает на цепь напряжение 6,10 В. Интересно, что падение напряжения на резисторах, подключенных параллельно, одинаковое (4,60 В каждое), хотя они имеют разное сопротивление. Падение на R3 составляет 1,49 В.
Получим ли мы те же значения из расчетов?
U R1.2 = I x R 1.2
U R1.2 = 670 мкА х 6,9 кОм
U R1.2 = 4,62 В
U R3 = I x R3
U R3 = 670 мкА х 2,2 кОм
U R3 = 1,47 В
Результаты вышли практически идентичными.
Теперь измерим ток в отдельных точках схемы:
Слева: схема подключения амперметра к цепи; справа: текущее измерение I
Слева: схема подключения амперметра к цепи; справа: измерение тока I1
Слева: схема подключения амперметра к цепи; справа: измерение тока I2
Батарея обеспечивает 6,10 В напряжения в замкнутом контуре, где течет ток 670 мкА. Сила тока (можем представить как протекающие электроны) делится на две ветви: некоторые из электронов проходят через ветвь, обозначенную I1, а некоторые — через ветвь I2. Во втором узле ветви I1 и I2 снова соединяются, чтобы дать ток I. Здесь и пришли к первому закону Кирхгофа: для каждого узла электрической цепи сумма токов, втекающих в узел, равна сумме токов, исходящих из узла. В нашем случае:
I = I1 + I2
Посмотрим, будет ли рассчитанный ток такой же, как и измеренный:
I1 = U R1 / R1
I1 = 4.62 В / 22 кОм
I1 = 210 мкА
I2 = U R2 / R2
I2 = 4.62 В / 10 кОм
I2 = 460 мкА
I = I1 + I2
I = 210 мкА + 460 мкА
Экспериментально полученные результаты очень похожи на полученные расчеты, что прекрасно показывает связь теории и практики в радиоэлектронике.
В общем на сегодня всё, в одном материале не легко охватить огромный мир электроники, да и время нужно чтоб освоить всю полученную информацию. Дальше переходите в раздел схем для начинающих и пробуйте собирать девайсы попроще, а возникающие вопросы можно прояснить на форуме. Успехов!
Условное графическое обозначение
Основу любого электронного устройства составляют радиодетали. К ним относятся резисторы, светодиоды, транзисторы, конденсаторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.
Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB1, резистора R1 и светодиода VD1. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R, после которой ставится его порядковый номер, например R1, R2, R5 и т. д.
Поскольку важным параметром резистора помимо сопротивления является мощность рассеивания, то ее значение также указывается в обозначении.
УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.
Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».
Источников питания
Для обозначения простого источника питания применяется символ, состоящий из 2 разделенных промежутком линий. Тонкая длинная характеризует положительный полюс, а короткая толстая — отрицательный. Кроме того, рядом с линиями ставится обозначение полюсов. Если нужно изобразить батарею, состоящую из нескольких гальванических элементов, то 2 символа для источника питания соединяются короткой пунктирной линией.
Проводов и их соединений
Проводники обозначаются тонкими горизонтальными или вертикальными линиями. Допускается отклонение на прямой или тупой угол. Если провода пересекаются, то место соединения выделяется точкой.
Для более легкого прочтения такие обозначения могут окрашиваться. Кабели символизируются линиями большей толщины.
Общего провода
Чтобы упростить начертание и чтение ПС, употребляется обозначение общего провода. Оно представляет собой перевернутую букву «Т». Ее вертикальная перекладина соединена со всеми проводами, которые подсоединены в точку с отрицательным потенциалом.
Радиодеталей
Для каждой радиодетали предусмотрено свое обозначение, утвержденное ГОСТом или другими стандартами. Благодаря этому достигается единообразие оформления.
Микросхема
Микросхема (U) – это схема, которая изготавливается на пластине или пленке. Обычно материалом для микросхемы служит кремний. Чип является не разборным элементом. При этом некоторые мастера умудряются определять радиокомпонент, находящийся в коротком замыкании, например в не разборной микросхеме Wi-Fi.
Резисторы
Резистор (R – обозначение в схеме) – для линейного преобразования силы тока в напряжение и наоборот. А также для ограничения тока в электрической цепи. Вместо резистора, с нулевым сопротивлением, допускается устанавливать перемычку, исключительно на время диагностики. После проведения мероприятий по поиску неисправности на плате телефона, установить R на своё место в цепи. Если резистор поврежден, то взять с “донорской” платы.
Конденсаторы
Конденсатор (С) – радиокомпонент предназначенный для накопления заряда. В схемотехнике применяется еще одно важное свойство конденсатора – это быстро отдавать заряд (разряжаться) при включении потребителя электрической энергии. Для того чтобы проверить конденсатор на наличие короткого замыкания, необходимо выпаять его из цепи и мультиметром в режиме прозвонки произвести измерения. Емкость конденсатора зависит от нескольких факторов. Один из них – геометрические размеры обкладок конденсатора. В айфон 6 при неисправности блока подсветки короткое замыкание на конденсаторах С1530, С1531, С1505 возникает при подключении платы к ЛБП.
Катушка
Катушка (Fl) – фильтр или предохранитель – предназначена для защиты цепи от воздействия повышенных токов. Является саморазрушающимся элементом и применяется для отключения замыкаемой цепи размыканием. Фильтр проверяется мультиметром в режиме “Прозвонка” цепи на целостность.
Диоды
Диод (D) – проводит электрический ток в одном направлении. То есть если при измерениях, диод пропускает ток в обратном направлении, значит он неисправен. Применяется в блоке подсветки телефона. Конструктивно имеет 3 вывода. Анод и два катода. На исправность диод проверяется мультиметром в режиме диодной прозвонки.
Полярность диода можно определить:
- ключ (метка) на катоде,
- мультиметром в режиме диодной прозвонки,
- визуально, по не паянной “донорской” плате.
Как научиться читать
Чтобы научиться читать электрические схемы, следует вначале изучить основные законы электротехники и правила соединения деталей. Их знание поможет добиваться нужных результатов при сборке действующих устройств и их работоспособности. Когда законы будут изучены, разбираются со стандартами по условному обозначению деталей и способами их подключения. Затем обращают внимание на тип элементов и их номиналы.
Как читать простые схемы
Процесс чтения для «чайников» рассматривается на примере простого проекта, состоящего из источника питания, звонка, нефиксируемой кнопки и проводников. Схема представляет собой замкнутую цепь с компонентами, соединенными последовательно. Это означает, что сила протекающего по ней тока будет одинакова в любой точке.
При подаче напряжения по нажатию кнопки звонок начинает звонить. Это связано с тем, что ток идет от положительного полюса батареи к отрицательному через все компоненты. Если провода не оказывают сопротивление постоянному току, то напряжение на клеммах звонка и выводах источника питания будет одинаковым по второму закону Кирхгофа.
Как научиться читать принципиальные схемы
На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.
Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.
Например простая схема усилителя на одном транзисторе.
Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.
Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.
Еще сложнее дело обстоит с цифровой техникой.
Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.
Принципиальные схемы это своего рода язык, у которого есть разные диалекты.
Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.
Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.
Какими буквами обозначаются радиодетали на схемах
Буквенное обозначение на схеме | Радиодеталь |
R | Резисторы (переменный, подстроечный и постоянный) |
VD | Диоды (стабилитрон, мост, варикап и т.д.) |
C | Конденсаторы (неполярный, электролитический, переменный и т.д.) |
L | Катушки и дроссели |
SA | Переключатели |
FU | Предохранители |
FV | Разрядники |
X | Разъемы |
K | Реле |
VS | Тиристоры (тетродные, динисторы, фототиристоры и т.п.) |
VT | Транзисторы (биполярные, полевые) |
HL | Светодиоды |
U | Оптопары |
Номиналы радиодеталей
Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.
К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.
Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.
Например, на этой схеме есть два резистора.
По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).
Рассмотрим на схеме два конденсатора.
В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.
Нанофарады обозначаются как nF.
Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.
Меры предосторожности
В работе радио,- и телемастера нужно избегать рисков воздействия опасного для жизни и здоровья человека напряжения. Нельзя оставлять включёнными приборы и инструменты, покидая рабочее место. Надо пользоваться единым выключателем, который прерывает электропитание всей системы энергообеспечения рабочего стола радиомастера.
Для новичка есть все возможности овладеть радиоделом. В средствах массовой информации всегда можно найти нужный справочный материал. Рынок радиотехники предоставляет широкий выбор электронных устройств, инструментов, материалов и измерительных приборов.
Источники
- https://rusenergetics.ru/polezno-znat/elektronika-dlya-chaynikov
- https://panelektro.ru/ampery/kak-chitat-elektricheskie-shemy.html
- https://radioskot.ru/publ/nachinajushhim/ehlektronika_dlja_nachinajushhikh/5-1-0-1634
- https://diodov.net/kak-chitat-elektricheskie-shemy/
- https://bga.center/osnovy-shemotehniki
- https://tyt-sxemi.ru/chitat-ehlektricheskie-skhemy/
- https://amperof.ru/elektromontazh/radiotexnika-dlya-nachinayushhix.html
Как вам статья?
Павел
Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.
Содержание статьи
- Виды электронных схем:
- принципиальные схемы
- блок-схемы
- монтажные схемы
- карты напряжений и сопротивлений
- Радиодетали на схемах:
- обозначение резисторов
- обозначение конденсаторов
- обозначение диодов и стабилитронов
- обозначение транзисторов
- обозначение микросхем
- обозначение кнопок и переключателей
- Буквенное обозначение радиодеталей:
- на принципиальных схемах
- коды функционального назначения элементов
- популярные сокращения в радиоэлектронике
Типы электронных схем
В радиоэлектронике различают несколько видов схем: принципиальные, монтажные, блок-схемы, карты напряжений и сопротивлений.
Принципиальные схемы
Такая электросхема дает полное представление обо всех функциональных узлах цепи, типах связей между ними, принципе работы электрооборудования. Принципиальные схемы обычно используются в распределительных сетях. Их разделяют на два типа:
- Однолинейный. На таком чертеже изображают только силовые цепи.
- Полный. Если электроустановка несложная, то все ее элементы могут быть отображены на одном листе. Для описания аппаратуры, имеющей в составе насколько цепей (силовых, измерительных, управления) изготавливают чертежи для каждого узла и располагают их на разных листах.
Блок-схемы
Блоком в радиоэлектронике называют независимую часть электронного устройства. Блок – понятие общее, в его состав может входить как небольшое, так и значительное количество деталей. Блок-схема (или структурная схема) дает только общее понятие об устройстве электронного прибора. На ней не отображаются: точный состав блоков, количество диапазонов их функционирования, схемы, по которым они собраны. На блок-схеме блоки обозначаются квадратами или кружками, а связи между ними – одной или двумя линиями. Направления прохождения сигнала обозначаются стрелками.
Названия блоков в полном или сокращенном виде могут наноситься непосредственно на схему. Второй вариант – нумерация блоков и расшифровка этих номеров в таблице, размещенной на полях чертежа. На графических изображениях блоков могут отображаться основные детали или наноситься графики их работы.
Монтажные
Монтажные схемы удобны для самостоятельного составления электроцепи. На них указывают места расположения каждого элемента цепи, способы связи, прокладку соединительных проводов. Обозначение радиоэлементов на таких схемах обычно приближается к их натуральному виду.
Карты напряжений и сопротивлений
Картой (диаграммой) напряжений называют чертеж, на котором рядом с отдельными деталями и их выводами указывают величины напряжений, характерных для нормальной работы прибора. Напряжения ставят в разрывах стрелок, показывающих, в каких местах необходимо производить измерения. На карте сопротивлений указывают значения сопротивления, характерные для исправного прибора и цепей.
Как обозначаются различные радиодетали на схемах
Как ранее было сказано, для обозначения радиодеталей каждого типа существует определенный графический символ.
Резисторы
Эти детали предназначаются для регулирования силы тока в цепи. Постоянные резисторы обладают определенной и неизменной величиной сопротивления. У переменных сопротивление находится в интервале от нуля до установленного максимального значения. Названия и условные обозначения этих радиодеталей на схеме регламентируются ГОСТом 2.728-74 ЕСКД. В общем случае на чертеже они представляют собой прямоугольник с двумя выводами. Американские производители обозначают резисторы на схемах зигзагообразной линией.
Постоянные резисторы
Характеризуются сопротивлением и мощностью. Обозначаются прямоугольником с линиями, обозначающими определенное значение мощности. Превышение указанной величины приведет к выходу детали из строя. Также на схеме указываются: буква R (резистор), цифра, обозначающая порядковый номер детали в цепи, величина сопротивления. Эти радиодетали обозначаются цифрами и буквами – «К» и «М». Буква «К» означает кОм, «М» – мОм.
Переменные резисторы
Существует несколько вариантов соединения резисторов:
- Последовательное. Конечный вывод одной детали соединяется с начальным выводом другой. По всем элементам цепи протекает общий ток. Подключение каждого последующего резистора увеличивает сопротивление.
- Параллельное. Начальные выводы всех сопротивлений соединяются в одной точке, конечные – в другой. Ток проходит по каждому резистору. Общее сопротивление в такой цепи всегда меньше, чем сопротивление отдельного резистора.
- Смешанное. Это наиболее популярный тип соединения деталей, объединяющий два описанных выше.
Конденсаторы
- Конденсаторы с постоянной емкостью. Около значка ставится буква «С», порядковый номер детали, значение номинальной емкости.
- С переменной емкостью. Около графического значка проставляются значения минимальной и максимальной емкости.
В цепях с высоким напряжением в конденсаторах, за исключением электролитических, после емкости указывают величину напряжения. При соединении электролитических конденсаторов требуется соблюдать полярность. Для обозначения положительно заряженной обкладки используют знак «+» или узкий прямоугольник. Если полярность отсутствует, обе обкладки обозначаются узкими прямоугольниками. Электролитические конденсаторы устанавливаются в фильтрах электропитания низкочастотных и импульсных устройств.
Диоды и стабилитроны
Стабилитрон – разновидность полупроводникового диода. Стабилизирует приложенное к выводам напряжение обратной полярности. Стабистор – диод, к выводам которого прилагается напряжение прямой полярности.
Транзисторы
Транзисторы – полупроводниковые приборы, используемые для генерации, усиления и преобразования электрических колебаний. С их помощью контролируют и регулируют напряжение в цепи. Отличаются разнообразием конструкций, диапазонов частот, форм и размеров. Наиболее популярны биполярные транзисторы, обозначаемые на схемах буквами VT. Для них характерна одинаковая электропроводность коллектора и эмиттера.
Микросхемы
Микросхемы – это сложные по составу электронные компоненты. Представляют собой полупроводниковую подложку, в которую интегрируют резисторы, конденсаторы, диоды и другие радиодетали. Служат для преобразования электроимпульсов в цифровые, аналоговые, аналогово-цифровые сигналы. Изготавливаются в корпусе или без него. Правила условного графического обозначения (УГО) цифровых и микропроцессорных микросхем регламентируются ГОСТом 2.743-91 ЕСКД. Согласно им, УГО имеет форму прямоугольника. На схеме показывают линии подвода к нему. Прямоугольник состоит только из основного поля или основного и двух дополнительных. В основном поле в обязательном порядке указывают функции, выполняемые элементом. В дополнительных полях обычно расшифровывают назначения выводов. Основные и дополнительные поля могут разделяться или не разделяться сплошной линией.
Кнопки, реле, переключатели
- Кнопка представляет собой двухконтактный прибор, служащий для краткосрочного соединения частей электроцепи способом нажатия.
- Выключатель – двухконтактное устройство, предназначенное для соединения и размыкания электроцепи.
- Переключатель – трехконтактный прибор, служащий для переключения электроцепей. Один контакт может находиться в двух разных положениях.
- Реле – электроприбор, который служит для переключения электроцепей путем подачи напряжения на электрическую обмотку. Если в реле присутствует несколько групп контактов, то им присваивают порядковые номера. Контакты могут быть замыкающими, размыкающими, переключающими.
Буквенное обозначение радиодеталей на схеме
Скачать буквенные обозначения радиодеталей в формате XLSX
Буквенные коды радиоэлементов на принципиальных схемах
Устройства и элементы | Буквенный код |
Устройства: усилители, приборы телеуправления, лазеры, мазеры; общее обозначение | А |
Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многоразрядные преобразователи, датчики для указания или измерения; общее обозначение | В |
Громкоговоритель | ВА |
Магнитострикционный элемент | ВВ |
Детектор ионизирующих излучений | BD |
Сельсин-датчик | ВС |
Сельсин-приемник | BE |
Телефон (капсюль) | BF |
Тепловой датчик | ВК |
Фотоэлемент | BL |
Микрофон | ВМ |
Датчик давления | ВР |
Пьезоэлемент | ВО |
Датчик частоты вращения, тахогенератор | BR |
Звукосниматель | BS |
Датчик скорости | ВѴ |
Конденсаторы | С |
Микросхемы интегральные, микросборки: общее обозначение | D |
Микросхема интегральная аналоговая | DA |
Микросхема интегральная цифровая, логический элемент | DD |
Устройство хранения информации (памяти) | DS |
Устройство задержки | DT |
Элементы разные: общее обозначение | Е |
Лампа осветительная | EL |
Нагревательный элемент | ЕК |
Разрядники, предохранители, устройства защиты: общее обозначение | F |
Предохранитель плавкий | FU |
Генераторы, источники питания, кварцевые генераторы: общее обозначение | G |
Батарея гальванических элементов, аккумуляторов | GB |
Устройства индикационные и сигнальные; общее обозначение | Н |
Прибор звуковой сигнализации | НА |
Индикатор символьный | HG |
Прибор световой сигнализации | HL |
Реле, контакторы, пускатели; общее обозначение | К |
Реле электротепловоѳ | кк |
Реле времени | КТ |
Контактор, магнитный пускатель | км |
Катушки индуктивности, дроссели; общее обозначение | L |
Двигатели, общее обозначение | М |
Приборы измерительные; общее обозначение | Р |
Амперметр (миллиамперметр, микроамперметр) | РА |
Счетчик импульсов | PC |
Частотомер | PF |
Омметр | PR |
Регистрирующий прибор | PS |
Измеритель времени действия, часы | РТ |
Вольтметр | PV |
Ваттметр | PW |
Резисторы постоянные и переменные; общее обозначение | R |
Терморезистор | RK |
Шунт измерительный | RS |
Варистор | RU |
Выключатели, разъединители, короткозамыкатели в силовых цепях (в цепях питания оборудования); общее обозначение | Q |
Устройства коммутационные в цепях управления, сигнализации и измерительных; общее обозначение | S |
Выключатель или переключатель | SA |
Выключатель кнопочный | SB |
Выключатель автоматический | SF |
Трансформаторы, автотрансформаторы; общее обозначение | T |
Электромагнитный стабилизатор | TS |
Преобразователи электрических величин в электрические, устройства связи; общее обозначение | и |
Модулятор | ив |
Демодулятор | UR |
Дискриминатор | Ul |
Преобразователь частотный, инвертор, генератор частоты, выпрямитель | UZ |
Приборы полупроводниковые и электровакуумные; общее обозначение | V |
Диод, стабилитрон | VD |
Транзистор | VT |
Тиристор | VS |
Прибор электровакуумный | VL |
Линии и элементы СВЧ; общее обозначение | W |
Ответвитель | WE |
Коро ткоэа мы ка тель | WK |
Вентиль | WS |
Трансформатор, фазовращатель, неоднородность | WT |
Аттенюатор | WU |
Антенна | WA |
Соединения контактные; общее обозначение | X |
Штырь (вилка) | ХР |
Гнездо (розетка) | XS |
Соединение разборное | XT |
Соединитель высокочастотный | XW |
Устройства механические с электромагнитным приводом; общее обозначение | Y |
Электромагнит | YA |
Тормоз с электромагнитным приводом | YB |
Муфта с электромагнитным приводом | YC |
Устройства оконечные, фильтры; общее обозначение | Z |
Ограничитель | ZL |
Фильтр кварцевый | ZQ |
Буквенные коды функционального назначения радиоэлектронного устройства или элемента
Функциональное назначение устройства, элемента | Буквенный код |
Вспомогательный | А |
Считающий | С |
Дифференцирующий | D |
Защитный | F |
Испытательный | G |
Сигнальный | Н |
Интегрирующий | 1 |
Гпавный | М |
Измерительный | N |
Пропорциональный | Р |
Состояние (старт, стоп, ограничение) | Q |
Возврат, сброс | R |
Запоминающий, записывающий | S |
Синхронизирующий, задерживающий | т |
Скорость (ускорение, торможение) | V |
Суммирующий | W |
Умножение | X |
Аналоговый | Y |
Цифровой | Z |
Буквенные сокращения по радиоэлектронике
Буквенное сокращение | Расшифровка сокращения |
AM | амплитудная модуляция |
АПЧ | автоматическая подстройка частоты |
АПЧГ | автоматическая подстройка частоты гетеродина |
АПЧФ | автоматическая подстройка частоты и фазы |
АРУ | автоматическая регулировка усиления |
АРЯ | автоматическая регулировка яркости |
АС | акустическая система |
АФУ | антенно-фидерное устройство |
АЦП | аналого-цифровой преобразователь |
АЧХ | амплитудно-частотная характеристика |
БГИМС | большая гибридная интегральная микросхема |
БДУ | беспроводное дистанционное управление |
БИС | большая интегральная схема |
БОС | блок обработки сигналов |
БП | блок питания |
БР | блок развертки |
БРК | блок радиоканала |
БС | блок сведения |
БТК | блокинг-трансформатор кадровый |
БТС | блокинг-трансформатор строчный |
БУ | блок управления |
БЦ | блок цветности |
БЦИ | блок цветности интегральный (с применением микросхем) |
ВД | видеодетектор |
ВИМ | время-импульсная модуляция |
ВУ | видеоусилитель; входное (выходное) устройство |
ВЧ | высокая частота |
Г | гетеродин |
ГВ | головка воспроизводящая |
ГВЧ | генератор высокой частоты |
ГВЧ | гипервысокая частота |
ГЗ | генератор запуска; головка записывающая |
ГИР | гетеродинный индикатор резонанса |
ГИС | гибридная интегральная схема |
ГКР | генератор кадровой развертки |
ГКЧ | генератор качающейся частоты |
ГМВ | генератор метровых волн |
ГПД | генератор плавного диапазона |
ГО | генератор огибающей |
ГС | генератор сигналов |
ГСР | генератор строчной развертки |
гсс | генератор стандартных сигналов |
гг | генератор тактовой частоты |
ГУ | головка универсальная |
ГУН | генератор, управляемый напряжением |
Д | детектор |
дв | длинные волны |
дд | дробный детектор |
дн | делитель напряжения |
дм | делитель мощности |
дмв | дециметровые волны |
ДУ | дистанционное управление |
ДШПФ | динамический шумопонижающий фильтр |
ЕАСС | единая автоматизированная сеть связи |
ЕСКД | единая система конструкторской документации |
зг | генератор звуковой частоты; задающий генератор |
зс | замедляющая система; звуковой сигнал; звукосниматель |
ЗЧ | звуковая частота |
И | интегратор |
икм | импульсно-кодовая модуляция |
ИКУ | измеритель квазипикового уровня |
имс | интегральная микросхема |
ини | измеритель линейных искажений |
инч | инфранизкая частота |
ион | источник образцового напряжения |
ип | источник питания |
ичх | измеритель частотных характеристик |
к | коммутатор |
КБВ | коэффициент бегущей волны |
КВ | короткие волны |
квч | крайне высокая частота |
кзв | канал записи-воспроизведения |
КИМ | кодо-импульсная модуляции |
кк | катушки кадровые отклоняющей системы |
км | кодирующая матрица |
кнч | крайне низкая частота |
кпд | коэффициент полезного действия |
КС | катушки строчные отклоняющей системы |
ксв | коэффициент стоячей волны |
ксвн | коэффициент стоячей волны напряжения |
КТ | контрольная точка |
КФ | катушка фокусирующая |
ЛБВ | лампа бегущей волны |
лз | линия задержки |
лов | лампа обратной волны |
лпд | лавинно-пролетный диод |
лппт | лампово-полупроводниковый телевизор |
м | модулятор |
MA | магнитная антенна |
MB | метровые волны |
мдп | структура металл-диэлектрик-полупроводник |
МОП | структура металл-окисел-полупроводник |
мс | микросхема |
МУ | микрофонный усилитель |
ни | нелинейные искажения |
нч | низкая частота |
ОБ | общая база (включение транзистора по схеме с общей базой) |
овч | очень высокая частота |
ои | общий исток (включение транзистора *по схеме с общим истоком) |
ок | общий коллектор (включение транзистора по схеме с обшим коллектором) |
онч | очень низкая частота |
оос | отрицательная обратная связь |
ОС | отклоняющая система |
ОУ | операционный усилитель |
ОЭ | обший эмиттер (включение транзистора по схеме с общим эмиттером) |
ПАВ | поверхностные акустические волны |
пдс | приставка двухречевого сопровождения |
ПДУ | пульт дистанционного управления |
пкн | преобразователь код-напряжение |
пнк | преобразователь напряжение-код |
пнч | преобразователь напряжение частота |
пос | положительная обратная связь |
ППУ | помехоподавляющее устройство |
пч | промежуточная частота; преобразователь частоты |
птк | переключатель телевизионных каналов |
птс | полный телевизионный сигнал |
ПТУ | промышленная телевизионная установка |
ПУ | предварительный усили^егіь |
ПУВ | предварительный усилитель воспроизведения |
ПУЗ | предварительный усилитель записи |
ПФ | полосовой фильтр; пьезофильтр |
пх | передаточная характеристика |
пцтс | полный цветовой телевизионный сигнал |
РЛС | регулятор линейности строк; радиолокационная станция |
РП | регистр памяти |
РПЧГ | ручная подстройка частоты гетеродина |
РРС | регулятор размера строк |
PC | регистр сдвиговый; регулятор сведения |
РФ | режекторный или заграждающий фильтр |
РЭА | радиоэлектронная аппаратура |
СБДУ | система беспроводного дистанционного управления |
СБИС | сверхбольшая интегральная схема |
СВ | средние волны |
свп | сенсорный выбор программ |
СВЧ | сверхвысокая частота |
сг | сигнал-генератор |
сдв | сверхдлинные волны |
СДУ | светодинамическая установка; система дистанционного управления |
СК | селектор каналов |
СКВ | селектор каналов всеволновый |
ск-д | селектор каналов дециметровых волн |
СК-М | селектор каналов метровых волн |
СМ | смеситель |
енч | сверхнизкая частота |
СП | сигнал сетчатого поля |
сс | синхросигнал |
сси | строчный синхронизирующий импульс |
СУ | селектор-усилитель |
сч | средняя частота |
ТВ | тропосферные радиоволны; телевидение |
твс | трансформатор выходной строчный |
твз | трансформатор выходной канала звука |
твк | трансформатор выходной кадровый |
ТИТ | телевизионная испытательная таблица |
ТКЕ | температурный коэффициент емкости |
тки | температурный коэффициент индуктивности |
ткмп | температурный коэффициент начальной магнитной проницаемости |
ткнс | температурный коэффициент напряжения стабилизации |
ткс | температурный коэффициент сопротивления |
тс | трансформатор сетевой |
тц | телевизионный центр |
тцп | таблица цветных полос |
ТУ | технические условия |
У | усилитель |
УВ | усилитель воспроизведения |
УВС | усилитель видеосигнала |
УВХ | устройство выборки-хранения |
УВЧ | усилитель сигналов высокой частоты |
УВЧ | ультравысокая частота |
УЗ | усилитель записи |
УЗЧ | усилитель сигналов звуковой частоты |
УКВ | ультракороткие волны |
УЛПТ | унифицированный ламповополупроводниковый телевизор |
УЛЛЦТ | унифицированный лампово полупроводниковый цветной телевизор |
УЛТ | унифицированный ламповый телевизор |
УМЗЧ | усилитель мощности сигналов звуковой частоты |
УНТ | унифицированный телевизор |
УНЧ | усилитель сигналов низкой частоты |
УНУ | управляемый напряжением усилитель. |
УПТ | усилитель постоянного тока; унифицированный полупроводниковый телевизор |
УПЧ | усилитель сигналов промежуточной частоты |
УПЧЗ | усилитель сигналов промежуточной частоты звук? |
УПЧИ | усилитель сигналов промежуточной частоты изображения |
УРЧ | усилитель сигналов радиочастоты |
УС | устройство сопряжения; устройство сравнения |
УСВЧ | усилитель сигналов сверхвысокой частоты |
УСС | усилитель строчных синхроимпульсов |
УСУ | универсальное сенсорное устройство |
УУ | устройство (узел) управления |
УЭ | ускоряющий (управляющий) электрод |
УЭИТ | универсальная электронная испытательная таблица |
ФАПЧ | фазовая автоматическая подстройка частоты |
ФВЧ | фильтр верхних частот |
ФД | фазовый детектор; фотодиод |
ФИМ | фазо-импульсная модуляция |
ФМ | фазовая модуляция |
ФНЧ | фильтр низких частот |
ФПЧ | фильтр промежуточной частоты |
ФПЧЗ | фильтр промежуточной частоты звука |
ФПЧИ | фильтр промежуточной частоты изображения |
ФСИ | фильтр сосредоточенной избирательности |
ФСС | фильтр сосредоточенной селекции |
ФТ | фототранзистор |
ФЧХ | фазо-частотная характеристика |
ЦАП | цифро-аналоговый преобразователь |
ЦВМ | цифровая вычислительная машина |
ЦМУ | цветомузыкальная установка |
ЦТ | центральное телевидение |
ЧД | частотный детектор |
ЧИМ | частотно-импульсная модуляция |
чм | частотная модуляция |
шим | широтно-импульсная модуляция |
шс | шумовой сигнал |
эв | электрон-вольт (е • В) |
ЭВМ. | электронная вычислительная машина |
эдс | электродвижущая сила |
эк | электронный коммутатор |
ЭЛТ | электронно-лучевая трубка |
ЭМИ | электронный музыкальный инструмент |
эмос | электромеханическая обратная связь |
ЭМФ | электромеханический фильтр |
ЭПУ | электропроигрывающее устройство |
ЭЦВМ | электронная цифровая вычислительная машина |
Была ли статья полезна?
Да
Нет
Оцените статью
(0) |
Что вам не понравилось?
Другие материалы по теме
19.04.2018
Как подобрать резистор по назначению и принципу работы
Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.
14.12.2017
Зарубежные и отечественные транзисторы
Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!
25.10.2017
Виды и классификация диодов
Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Радиодетали – одно из названий различных электронных компонентов, которые используются для изготовления приборов как аналоговой, так и цифровой электроники. Слово «радиодетали» появилось в начале двадцатого века, когда стали изготавливать радиоприемники в больших количествах. На тот момент радио считалось одним из наиболее сложных электронных устройств. Радиодетали использовали для изготовления приемников, отсюда и пошло это название. Позже радиодеталями стали называть и другие электронные компоненты, которые даже не имеют никакой связи с радиоприемником. Если у вас есть радиодетали, то их можно продать. Подробнее о том, как это сделать можно узнать перейдя по ссылке https://radiogold.pro/.
Виды радиодеталей
Разделение радиодеталей основывается на способах действия в электрической цепи. Выделяют два вида: активные и пассивные компоненты.
Активные радиодетали
Активные компоненты – это компоненты, способные напрямую управлять подаваемым цифровым или аналоговым сигналом. К ним относятся различные микросхемы, транзисторы и диоды.
Транзисторы управляют входным напряжением цепи. Их основное преимущество – довольно маленькие размеры.
Диоды – это элементы, пропускающие через себя электрический ток, но только в одном направлении.
Микросхемы – наиболее сложные компоненты. В них установлена элементная база, с помощью которой они обрабатывают подаваемые сигналы.
Пассивные элементы
К логическим радиодеталям относят такие элементы, которые не способны выполнять какие-либо логические операции. К ним относятся резисторы, конденсаторы, катушки индуктивности и трансформаторы.
Трансформаторы – это элементы, обеспечивающие изменение тока без смены его частотных характеристик.
Конденсаторы выполняют роль своеобразных накопителей электроэнергии. Классификация данных элементов основана на используемом диэлектрике (он может быть в одном из трех агрегатных состояний).
Катушки индуктивности необходимы для защиты схемы от резких перепадов тока или каких-либо помех.
Резисторы – это компоненты, задача которых состоит в перераспределении электрического питания на микросхемы. Эти радиодетали различаются по вольт-амперной характеристике и по технологиям изготовления.
Принцип работы радиодеталей
В современном мире радиодетали установлены почти во всей технике. И микроволновки, и телевизоры, и даже в простой гирлянде. Эти элементы считаются основой работы всех гаджетов. Принцип работы радиодеталей основан на электронной схеме. Задача этой схемы – направлять электрический ток, а также управлять им. Самая простейшая схема состоит всего из трех элементов: источника тока, нагрузки и проводящий путь.