Руководство по ремонту ибп

На чтение 17 мин Просмотров 32.1к. Опубликовано 07.12.2020 Обновлено 15.03.2023

Источники бесперебойного питания (ИБП) или иначе UPS (Uninterruptible Power Supply) – не только весьма полезные, но зачастую и необходимые приборы. Они помогут продержаться при кратковременном отключении электричества и, главное, позволят сохранить наработанные данные и корректно выключить компьютер. Но все когда-то ломается. В этой статье мы рассмотрим ремонт «бесперебойника» своими руками. Серьезную неисправность нам, конечно, не устранить, но с относительно простыми можно попробовать справиться самостоятельно.

Содержание

  1. Виды ИБП
  2. Off-Line
  3. Line-Interactive
  4. On-Line
  5. Типовые схемы источников бесперебойного питания
  6. Smart-UPS Line-Interactive
  7. Back-UPS
  8. Пошаговая инструкция по ремонту
  9. Как разобрать бесперебойник
  10. Способ 1
  11. Способ 2
  12. Устраняем неисправности
  13. Back-UPS
  14. Smart-UPS

Виды ИБП

Общий принцип работы “бесперебойника” довольно прост. Пока есть сетевое напряжение, нагрузка питается от него. Как только сетевое напряжение пропадет, нагрузка будет питаться от резервной АКБ. При появлении сетевого напряжения нагрузка снова переключится на него. На сегодняшний день существуют три типа источников бесперебойного питания, отличающихся принципом работы:

  1. Off-Line.
  2. Line-Interactive.
  3. On-Line.

Off-Line

Наиболее простой тип ИБП. Он состоит из сетевого фильтра помех, зарядного устройства, инвертора, модуля контроля и управления.

схема ИБП типа Off-Line

Упрощенная структурная схема “бесперебойника” типа Off-Line

Пока присутствует сетевое напряжение, оно проходит через фильтр и поступает в нагрузку. Одновременно зарядное устройство заряжает резервный аккумулятор. Как только величина питающего напряжения выйдет за установленные пределы или оно будет недопустимо зашумлено помехами, запустится инвертор и произойдет переключение на питание от АКБ. При этом время переключения обычно составляет 4-6 мс.

простота

компактность

низкая стоимость

повышенный износ АКБ (по сравнению с ИБП других типов)

отсутствие стабилизации напряжения при работе от сети

на переключение требуется время

при работе от АКБ нагрузка питается аппроксимированной синусоидой или вообще разнополярными импульсами

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Полезно! Понятие «аппроксимированная синусоида» обозначает форму выходного сигнала источника бесперебойного питания, условно приближенную к синусоидальной форме. Форма сигнала аппроксимированной синусоиды может быть трапецеидальной или ступенчатой.

Как отремонтировать бесперебойник для компьютера своими руками

Отличие осциллограмм аппроксимированной и чистой синусоиды

Line-Interactive

Устройства этого типа работают по сходному принципу, но в цепи питания от сети стоит стабилизатор, выполненный на трансформаторе со ступенчатым переключением обмоток. Это позволяет питать от сети нагрузку даже тогда, когда сетевое напряжение сильно отличается от номинального.

Как отремонтировать бесперебойник для компьютера своими руками

Упрощенная структурная схема ИБП  типа Line-Interactive

экономичность

компактность

стабилизацию выходного напряжения

относительно низкую стоимость

ступенчатое изменение выходного напряжения

на переключение требуется время

при работе от АКБ нагрузка питается аппроксимированной синусоидой

Важно! Существуют ИБП типа Line-Interactive, выдающие при питании от АКБ чистую синусоиду. Стоят они существенно дороже, их меньше, тем не менее такие устройства есть.

On-Line

Наиболее продвинутый тип ИБП с двойным преобразованием. В нем сетевое напряжение выпрямляется и поступает на инвертор, где снова преобразуется в первоначальный вид, но уже без помех и со стабилизированным напряжением правильной синусоидальной формы. Как только сетевое напряжение пропадет, нагрузка начнет питаться от АКБ. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения можно считать равным нулю.

ИБП  типа On-Line

Упрощенная структурная схема ИБП типа On-Line

стабилизация выходного напряжения;

чистая синусоида без помех;

отсутствует задержка на переключение.

относительно низкая экономичность (постоянные энергозатраты на двойное преобразование);

сложная конструкция;

высокая стоимость.

Как отремонтировать бесперебойник для компьютера своими руками

Типовые схемы источников бесперебойного питания

Прежде чем попытаться отремонтировать отказавшее устройство, взглянем на электрические схемы ИБП двух типов: Line-Interactive и On-Line.

Smart-UPS Line-Interactive

Схема этого источника бесперебойного питания, использующего технологию Line-Interactive, довольно сложна, но мы попытаемся хотя бы приблизительно разобраться в принципе ее работы. Начнем со структурной схемы.

Структурная схема Smart-UPS

Структурная схема ИБП Smart-UPS

Напряжение питания проходит через сетевой фильтр. Если характеристики этого напряжения в норме, то реле RY1-RY5 включены, нагрузка питается от сети. Реле RY2 и RY3 совместно с трансформатором исполняют роль стабилизатора напряжения. При необходимости обмотка W1 подключается последовательно к W2. В прямом включении выходное напряжение снижается, в инверсном – повышается.

Таким образом, мы получаем трехступенчатый стабилизатор напряжения. Как только сетевое напряжение пропадет, отключатся реле RY2-RY5. При этом запускается инвертор, и нагрузка начинает получать питание от аккумуляторов. Теперь перейдем непосредственно к принципиальной схеме ИБП.

Модуль входных цепей

Принципиальная электрическая схема модуля входных цепей (кликните для увеличения)

За фильтрацию сетевого напряжения отвечают дроссель L1, варисторы MV1, MV3, MV4 и конденсаторы С14-С16. Трансформаторы CT1 отвечает за анализ высокочастотной помехи, CT2 контролирует ток нагрузки. Сигналы с этих трансформаторов поступают на ЦАП IC10 (схема модуля процессора).

Трансформаторы Т1 и Т2 являются датчиками входного и выходного напряжений соответственно. Сигнал T1 поступает на компаратор IC7. Реле RY3 и RY2 управляются транзисторами Q43 и Q49, получающими команды от процессора IC1.

Как отремонтировать бесперебойник для компьютера своими руками

Модуль микропроцессора (кликните для увеличения)

В модели Smart-UPS используется микропроцессор S87C654 (IC12). Он является сердцем устройства и управляет практически всеми узлами, получая соответствующие сигналы с тех или иных датчиков. Управляющая программа для него хранится в электрически перепрограммируемом ПЗУ IC13. ЦАП IC15 формирует эталонную опорную синусоиду.

Как отремонтировать бесперебойник для компьютера своими руками

Оконечный блок (кликните для увеличения)

Формирование управляющего сигнала доверено IC14 и IC17. Мощный мостовой инвертор собран на полевых транзисторах Q9-Q14, Q19-Q24. Во время положительной полуволны управляющего сигнала открыты Q12-Q14 и Q22-Q24, a Q19-Q21 и Q9-Q11 закрыты. Во время отрицательной открыты Q19-Q21 и Q9-Q11, a Q12-Q14 и Q22-Q24 закрыты. Управляют ключами транзисторы Q27-Q30, Q32, Q33, Q35, Q36.

В качестве нагрузки ключей используется мощный трансформатор, подключаемый к точкам W5 (желтый) и W6 (черный). На схеме он не показан. В результате работы ключей на выходной обмотке трансформатора формируется выходное синусоидальное напряжение 230 В частотой 50 Гц. Зарядка батареи при питании от сети осуществляется теми же мощными ключами инвертора, работающими в «обратном» режиме.

Back-UPS

Этот источник бесперебойного питания, работающий в режиме OFF-LINE, не имеет процессора, и все управляющие сигналы формируются компараторами. Рассмотрим его структурную схему.

Back-UPS

Структурная схема Back-UPS

Сетевое напряжение через прерыватель по перегрузке поступает на фильтр. Прерыватель расположен на задней стенке прибора. Если возникла перегрузка, он срабатывает и его кнопка «выскакивает». Чтобы запустить ИБП после перегрузки, кнопку нужно вернуть в исходное положение, просто нажав на нее рукой.

При нормальном сетевом напряжении реле RY1 включено, его контакты 3 и 5 замкнуты. Нагрузка питается от сети через фильтр помех. Зарядное устройство в таком режиме заряжает аккумуляторную батарею. Если напряжение исчезает, ниже нормы или сильно зашумлено помехами, замыкаются контакты 3 и 4 реле RY1, и нагрузка получает питание от АКБ через инвертор. Время переключения на инвертор и обратно составляет 4-6 мс.

Важно! Форма выходного сигнала у инверторов этого типа прямоугольная разнополярная с частотой 50 Гц. Длительность импульсов – 5 мс, амплитуда – 300 В. При этом эффективное напряжение составляет 225 В.

Как отремонтировать бесперебойник для компьютера своими руками

Модуль входных цепей (кликните для увеличения)

Роль сетевого фильтра исполняют дроссели L1 и L2, варисторы MOV2 и 5MOV, конденсаторы С38 и С40. Трансформатор T1 (см. схему управления) является датчиком входного напряжения и одновременно источником питания для зарядки АКБ. Если напряжение на входе пропадает, то микросхемы IC3 и IC4 формируют команду включения инвертора, которая усиливается ключом IC6 (сигнал лог. «1», поступающий на выводы 1 и 13 IC2).

Как отремонтировать бесперебойник для компьютера своими руками

Схема управления (кликните для увеличения)

Элементы R55, R122, R123 совместно с DIP-переключателем SW1 определяют порог входного напряжения, ниже которого запускается инвертор, и нагрузка переключается на питание от батареи. Тонкую настройку нижнего порога можно настроить резистором VR2.

Как отремонтировать бесперебойник для компьютера своими руками

Оконечный модуль (кликните для увеличения)

Микросхема IC7 отвечает за формирование управляющих импульсов. Эти импульсы подаются на мощные ключи Q4-Q6, Q36 (первое плечо) и Q1-Q3, Q37 (второе плечо). Ключи нагружены на трансформатор (на схеме не показан), на вторичной обмотке которого формируется импульсное разнополярное напряжение величиной 225 В частотой 50 Гц. Длительность импульсов можно регулировать резистором VR3, а частоту – резистором VR4 (схема управления).

На элементах IC3, IC6 собран узел синхронизации включения инвертора с напряжением сети. IC5, IC2, IC3 включают звуковой сигнал, информирующий о переходе на питание от батареи. При этом короткие звуковые сигналы информируют о работе от батареи, а непрерывный – о том, что энергии АКБ хватит еще на 5 мин. (SW1 разомкнут) или на 2 мин. (SW1 замкнут). Этот переключатель расположен на схеме управления.

Пошаговая инструкция по ремонту

Со схемами мы разобрались, можно начать ремонт ИБП своими руками. Как было замечено ранее, схема любого бесперебойника довольно сложна, но наиболее распространенные типовые неисправности можно устранить своими силами, имея самый простой инструмент – тестер, паяльник, отвертки.

Как разобрать бесперебойник

В зависимости от производителя и модели компьютерного источника бесперебойного питания разобрать их можно одним из двух способов.

Способ 1

На задней стенке находим 4 винта и отворачиваем их. Аккуратно тянем заднюю стенку на себя и отодвигаем. Снять полностью ее не получится – она соединена с блоком проводами.

Как отремонтировать бесперебойник для компьютера своими руками

Снятие задней стенки

Над передней стенкой находим паз и при помощи отвертки отжимаем замок. Снимаем переднюю панель. Она тоже на проводах!

Как отремонтировать бесперебойник для компьютера своими руками

Снятие передней панели

Под передней стенкой находим еще три винта. Отворачиваем их. После этого боковая стенка легко снимется.

Как отремонтировать бесперебойник для компьютера своими руками

Снятие боковой стенки

Способ 2

Здесь все несколько проще. Переворачиваем ИБП вверх «ногами». Находим 4 винта, отмеченные на фото ниже красными стрелками. Отверткой с длинным стержнем отворачиваем их. Беремся за заднюю часть крыши и слегка приподнимаем.

Как отремонтировать бесперебойник для компьютера своими руками

Эти винты нужно отвернуть

Ставим ИБП передней панелью к себе. Беремся за задний край верхней крышки. Тянем его на себя и вверх одновременно. Передняя панель держится на замках (на фото выше указаны зелеными стрелками), именно они должны выйти из зацепления. После этого верхняя крышка легко снимется.

Как отремонтировать бесперебойник для компьютера своими руками

Снятие верхней крышки

Устраняем неисправности

Итак, мы разобрали прибор, можно заняться ремонтом. Ремонтировать будем оба, но начнем с OFF-LINE, как с более простого и популярного.

Back-UPS

Прежде всего необходимо проверить основные параметры и при необходимости их отрегулировать. Вот они:

  1. Частота выходного напряжения. Подключаем к выходу ИБП частотомер или осциллограф. Подстроечным резистором VR4 устанавливаем частоту 50 Гц.
  2. Величина выходного напряжения. Включаем ИБП в режим работы от АКБ, вместо нагрузки подключаем вольтметр. При помощи подстроечного резистора VR3 устанавливаем напряжение 208 В.
  3. Пороговое напряжение. Переводим переключатели 2 и 3 на задней стенке в положение OFF. Включаем ИБП в сеть через ЛАТР. Устанавливаем на ЛАТРе напряжение 196 В. Поворачиваем движок резистора VR2 до упора против часовой стрелки. Медленно поворачиваем движок по часовой стрелке до тех пор, пока ИБП не переключится на питание от аккумулятора.
  4. Напряжение заряда. Убедимся, что сетевое напряжение в норме. Отключаем АКБ, вместо нее подключаем вольтметр. Подстроечным резистором VR1 устанавливаем напряжение 13.6 В.

Ну а теперь рассмотрим наиболее часто встречающиеся неисправности источников бесперебойного питания типа OFF-LINE, которые можно устранить самостоятельно, не прибегая к помощи специалистов.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Позиционные обозначения деталей указаны согласно одноименным схемам, расположенным выше. Они могут быть расположены на разных каскадах схем, будьте внимательны, анализируйте все схемы и ищите расположение элементов.

Поведение ИБП Возможная причина Действия
ИБП не работает, пахнет дымом Неисправен входной фильтр Проверить варисторы MOV2, MOV5, L1, L2, С38, С40, а также дорожки печатной платы, соединяющие их
ИБП не включается Сработал прерыватель цепи по перегрузке Отключить часть потребителей, включить сработавший прерыватель, нажав на кнопку, расположенную на задней стенке
АКБ неисправна Отключить АКБ, замерить напряжение на ней, при необходимости заменить
Неисправность инвертора Прозвонить транзисторы Q1-Q6, Q37, Q36, резисторы R1-R3, R6-R8, R147, R148, диоды D36-D38, D41 и транзисторы Q30, Q31. Проверить предохранители F1 и F2
Заменить микросхему IC2
При включении ИБП отключается нагрузка Неисправность Т1 Прозвонить трансформатор Т1. Осмотреть дорожки на плате, ведущие от Т1. Проверить предохранитель F3
Напряжение в сети есть, но нагрузка питается от аккумуляторов Сетевое напряжение слишком низкое Замерить напряжение в сети. Изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства
ИБП включается, но не питает нагрузку Неисправно реле RY1 или питающих его узлов Прозвонить RY1 и транзистор Q10. Проверить исправность IC4 и IC3, замерить напряжения на их выходах
Осмотреть дорожки на плате, отвечающие за реле
ИБП жужжит и/или отключает нагрузку. Неисправен инвертор См. «Неисправность инвертора»
Время резервного питания ниже ожидаемого Аккумуляторные батареи были недозаряжены или не держат емкость Замерить напряжение на отключенной АКБ, при необходимости зарядить. Проверить емкость АКБ, подключив к нему нагрузку известной мощности. К примеру, автомобильную лампу дальнего света.
Слишком велика нагрузка Отключить потребители, которые могут обойтись без резервного питания (принтер, дополнительный монитор, и т. д.).
При включении слышен непрерывный звуковой сигнал АКБ сильно разряжена или неисправна Замерить напряжение на отключенной АКБ, при необходимости зарядить.Проверить емкость АКБ, подключив к нему нагрузку известной мощности. К примеру, автомобильную лампу дальнего света.
АКБ не заряжается или заряжается не полностью Неисправен диод D8 Прозвонить D8.
Напряжение заряда ниже нормы Откалибровать напряжение заряда аккумулятора подстройкой резистора VR1

Smart-UPS

Теперь перейдем к ремонту ИБП типа Line-Interactive. Прежде всего проверим все необходимые для работы устройства напряжения. Измерять будем на выводах микросхем относительно общего провода.

Напряжения в Smart-UPS и возможные причины их отсутствия

Микросхема/вывод Напряжение, В Возможная причина неисправности
IC4/1 +24 IC4, C63, C41, C36, SNMP, плата дисплея или ее гибкий шлейф
IC4/3 +12 IC5, IC2, C8, D401, Q9 – Q14, Q19 – Q24
IC5/3 +5 IC5, IC12, D402, С65, IC10, IC13 (РПЗУ)
IC17/1 -8 IC17, IC9, Q39, Q40, С7, С53, С54, D27, D28

Если напряжения в норме или мы восстановили недостающие, переходим к возможным причинам неисправности и методам их устранения.

Поведение прибора Возможная причина Действия
ИБП не включается Отсутствует контакт на клеммах батареи Проверить клеммы, при необходимости почистить
Мала емкость АКБ или она неисправна Замерить напряжение на отключенной АКБ, при необходимости зарядить. Проверить емкость АКБ, подключив к нему нагрузку известной мощности. К примеру, автомобильную лампу дальнего света.
Пробиты полевые транзисторы мощного инвертора Прозвонить Q9-Q14, Q19-Q24. Проверить резисторы в цепях их затворов. Заменить IC16.
Обрыв или замыкание в шлейфе дисплея Проверить и при необходимости заменить шлейф. Проверить предохранитель F3 и транзистор Q5.
Неисправна кнопка включения Проверить и при необходимости заменить SW2
ИБП работает только от АКБ Сгорел предохранитель F3 Проверить F3. Прозвонить транзисторы Q5 и Q6
Горит индикатор замены АКБ, ИБП не включается Неисправна АКБ или сбой программного обеспечения Запустить тест-программу от APC, провести калибровку АКБ
ИБП не включается Неисправен сетевой кабель Прозвонить кабель
Холодная пайка или неисправность элементов входного фильтра Проверить качество пайки и исправность L1, L2 и Т1
Сработали варисторы защиты Проверить варисторы MV1…MV4
При включении ИБП нагрузка отключается Неисправен датчик напряжения Т1 Прозвонить обмотки Т1 и дорожки его питания. Прозвонить D18-D20, С63, С10
Мигают индикаторы дисплея Конденсатор С17 потерял емкость (“высох”) Заменить С17
Большой ток утечки конденсаторов С44 или С52 Заменить С44 или С52
Неисправны оптопара IC3 и диод D20 Проверить и при необходимости заменить IC3 и D20.
Перегрузка Слишком велика нагрузка Отключить потребители, которые могут обойтись без резервного питания (принтер, дополнительный монитор, и т. д.).
Неисправен трансформатор Т2 Прозвонить обмотки Т2, проверить дорожки на плате в его окружении
Неисправен датчик тока СТ1 Прозвонить и при необходимости заменить СТ1. Сопротивление должно быть не более 4 Ом.
Неисправна микросхема IC15 Заменить IC15. Проверить напряжение 8 В и 5 В. Проверить и при необходимости заменить: IC12, IC8, IC17, IC14 и мощные полевые транзисторы инвертора. Проверить обмотки силового трансформатора.
Не заряжается АКБ Сбой программного обеспечения Откалибровать АКБ тест-программой от АРС. Проверить константы 4, 5, 6, 0.
Вышла из строя схема заряда АКБ Заменить IC14. Измерить напряжение на выводе 9 микросхемы IC14, если +8 В нет, то заменить IC17 или С88.
Неисправна батарея Замерить напряжение на отключенной АКБ, при необходимости зарядить. Проверить емкость АКБ, подключив к нему нагрузку известной мощности. К примеру, автомобильную лампу дальнего света.
Неисправен микропроцессор Заменить IC12
При включении слышен щелчок, ИБП не включается Неисправна схема сброса Проверить исправность Q51-Q53,С77, R115. Возможно, придется заменить IC11 или IC15,
Искаженное отображение информации на дисплее Неисправны элементы платы индикации Проверить и при необходимости заменить Q57…Q60.
При работе от АКБ ИБП самопроизвольно выключается и включается Пробит транзистор Q3 Проверить и при необходимости заменить Q3

Ну вот мы и отремонтировали свой источник бесперебойного питания самостоятельно, не имея при этом специальных знаний. А если ничего не получилось, то хотя бы попытались. Во всяком случае, не стоит отчаиваться при неудаче. ИБП – сложное электронное устройство и при серьезной неисправности его ремонт под силу лишь специалистам.

На чтение 14 мин Просмотров 20к. Опубликовано 26.11.2021 Обновлено 10.07.2022

Содержание

  1. Таблица неисправностей и возможных причин поломки
  2. Основные виды схем применяемых в ИБП
  3. Алгоритм ремонта источника бесперебойного питания

Внезапные отключения электроэнергии — не такое уж частое явление, но случаются они, обычно, в тот момент, когда долго вводимые перед этим данные не успели сохранить. Исключить такие ситуации призвано использование UPS (Uninterruptible Power Supply, он же ИБП – Источник Бесперебойного Питания), оберегающего компьютер от потери данных при исчезновении внешнего электроснабжения. Эти в целом надежные приборы иногда выходят из строя, а отремонтировать во многих случаях их можно самостоятельно.

Таблица неисправностей и возможных причин поломки

Самые простые ситуации можно разрешить, не обладая специальными знаниями и навыками и не разбирая ИБП. Эти случаи сведены в таблицу.

Видимое проявление проблемы Возможная причина Способ устранения
UPS не включается или работает только от аккумулятора Неисправен сетевой шнур Заменить сетевой шнур
Перегорел плавкий предохранитель или сработало устройство защиты. Заменить предохранитель или взвести защитное устройство.
Отсутствует или неисправна батарея Установить исправную АКБ
При исправной батарее горит сигнал низкого уровня заряда Сбилась калибровка зарядного контроллера Восстановить калибровку с помощью ПО от производителя
Нет питания нагрузки при исчезновении напряжения сети (аккумулятор исправен) Сбой программного обеспечения Сбросить контроллер кнопкой «Сброс» (если есть) или перепрошить программу
Не заряжается АКБ Сбой программного обеспечения Сбросить контроллер кнопкой «Сброс» или перепрошить программу
ИБП отключается, горит значок перегрузки Излишняя нагрузка Уменьшить мощность нагрузки или количество потребителей

Не все УПС управляются программно. Недорогие модели собраны на дискретных элементах и микросхемах небольшой степени интеграции. Советы по перезагрузке, перепрошивке или настройке ПО к ним не относятся. Также надо учитывать, что одни и те же неисправности могут быть как при сбое работы ПО, так и при проблемах с «железом», поэтому сброс или перепрошивка – сродни первой медицинской помощи. Может помочь, а может не помочь. В этом случае понадобится глубокая диагностика и ремонт аппаратной части.

Схемотехника и ремонт бесперебойного блока питания

Кнопка взвода устройства защиты сети UPS APC.

Основные виды схем применяемых в ИБП

Если предварительное тестирование проведено, то можно попытаться провести более глубокую диагностику. Даже обладая специальными знаниями, полезным будет изучить общие принципы работы ИБП и принципиальные схемы конкретных приборов.

Для резервирования питания офисной техники применяются несколько типов бесперебойников, различающихся своей схемотехникой. Первый тип – Offline.

Схемотехника и ремонт бесперебойного блока питания

Структурная схема ИБП Offline.

Как и у всех УПС, в схеме имеется сетевой фильтр, зарядное устройство и батарея, которая питает преобразователь (инвертор) постоянного напряжения в переменное. В нормальном режиме выход преобразователя к нагрузке не подключен. При исчезновении питающей сети происходит переключение потребителей на питание от инвертора. Основной минус такого подхода – на переключение требуется время. Оно минимально для человеческого восприятия, но для техники может быть слишком большим. Некоторые устройства могут за это время отключиться или потерять данные. Зато эти бесперебойники простые, дешевые, надежные и ремонтопригодные.

ИБП, построенные по схеме Line interactive, работают по сходному принципу, но у них на входе установлен стабилизатор сетевого напряжения. Он построен по принципу переключения отводов первичной обмотки трансформатора. Поэтому при изменениях параметров сети потребители питаются стабильным напряжением, и переключение в автономный режим происходит только тогда, когда входной стабилизатор не может справиться. То есть, гораздо реже.

Схемотехника и ремонт бесперебойного блока питания

Работа UPS типа Line interactive в нормальном режиме и в режиме резервирования.

Самым дорогим, но и оптимальным способом построения резервного источника считается On-line. В этом случае батарея постоянно подзаряжается сетевым напряжением (буферный режим), а потребители постоянно питаются от инвертора стабилизированным напряжением. При исчезновении питания от сети не происходит переключения, бестоковая пауза отсутствует. Такие приборы эффективны, но дороговаты.

Схемотехника и ремонт бесперебойного блока питания

Блок-схема устройства On-line.

Алгоритм ремонта источника бесперебойного питания

Если есть подозрения на выход из строя (потерю емкости) аккумулятора, проверить его можно без разборки прибора. Для этого надо подержать UPS включенным в сеть 220 вольт до заведомо полной зарядки АКБ. Потом к разъему для нагрузки надо подключить лампы накаливания соответствующей мощности (для источника с выходной мощностью 600 ватт потребуется 10 стоваттных ламп) и дождаться появления сигнализации разряда батареи (Low battery level).

Если время полного разряда существенно меньше заявленного в технической документации, значит, пришло время задуматься о скорой замене батареи. Если емкость снизилась до уровня, при котором время резервирования стало неприемлемым, менять аккумулятор придется срочно.

Если предварительные методы диагностики и ремонта результата не дали, можно разобрать UPS и попытаться протестировать более глубоко. Прежде надо здраво оценить свою квалификацию – если она недостаточна, возможно, поход в сервисный центр обойдется дешевле и быстрее.

Если решение починить прибор самостоятельно принято, надо изучить конструкцию корпуса бесперебойника. Некоторые приборы помещены в пластиковый кейс, скрепленный винтами.

Чтобы снять крышку, надо перевернуть УПС и снизу отвернуть четыре винта (самореза). В некоторых устройствах крышка крепится на защелках, которые надо аккуратно оттянуть.

Схемотехника и ремонт бесперебойного блока питания

Винты крепления верхней панели.

Компоновка обычна для большинства недорогих UPS:

  • в верхнем отсеке находится плата с электроникой, на стенку выведены разъемы для слаботочных цепей;
  • в нижнем – аккумулятор, силовой трансформатор, на стенку выведены силовые разъемы.

Схемотехника и ремонт бесперебойного блока питания

Внутреннее пространство бесперебойника.

Если тест аккумулятора не проведен до разборки, его можно произвести сейчас, но понадобится набор лампочек на 12 вольт. Надо полностью зарядить АКБ и подключить к нему нагрузку из ламп. Контролируя напряжение на выходе, надо зафиксировать время разряда до 10,5 вольт. Емкость при этом вычисляется по формуле:

С=(P/12)*t, где:

  • С – фактическая емкость в ампер-часах;
  • P — мощность лампы, Вт;
  • 12 – напряжение АКБ, вольт;
  • t – время разряда, часов.

Еще лучше замерить ток разряда и подставить его в формулу вместо множителя P/12 в амперах. Решение о замене батареи принимается по тем же критериям, что и при тестировании без разборки.

Надо помнить, что некоторые ИБП вообще не включаются при отсутствии или серьезной неисправности аккумулятора. Поэтому поиск проблемы рекомендуется начать с тестирования АКБ.

Схемотехника и ремонт бесперебойного блока питания

Тестирование АКБ под нагрузкой из ламп на 12 вольт.

Компоновка аппарата APC Back Up 500 выполнена по-другому. Для аккумулятора предусмотрен отдельный отсек, добраться до него можно без разборки, просто отжав защелку крышки.

Схемотехника и ремонт бесперебойного блока питания

Отсек АКБ.

Входная силовая часть (фильтр и силовой трансформатор) расположены в другом отсеке.

Схемотехника и ремонт бесперебойного блока питания

Снятие задней крышки.

Чтобы до него добраться, надо вывинтить два самореза. Откроется ниша с элементами силовой цепи.

Схемотехника и ремонт бесперебойного блока питания

Расположение входных цепей и силового трансформатора.

Чтобы добраться до платы с электроникой, надо отжать защелки передней панели.

Схемотехника и ремонт бесперебойного блока питания

Снятие передней панели APC 500.

В приборах других производителей порядок разборки и расположение основных элементов может отличаться. На основании приведенных примеров разобраться не составит труда.

Диагностику прибора начинают с визуального осмотра. Так можно обнаружить:

  • отпаявшиеся провода;
  • вздувшиеся оксидные конденсаторы;
  • отгоревшие дорожки;
  • трещины;
  • обгоревшие компоненты.

Читайте также

Схема бестрансформаторного источника питания

Если элемент обгорел, это не говорит однозначно о нем, как о виновнике неисправности. Проблема может быть в другом компоненте. Но уже так можно локализовать неисправность на участке схемы.

Если невооруженным глазом обнаружить проблему не удалось, надо анализировать схему. Пошаговую инструкцию в этом случае дать невозможно – схемы разнообразны, а потенциальные неисправности еще разнообразнее. Но общий принцип поиска проблемы разобрать вполне реально. Это будет сделано на примере UPS N-Power SVP-625 – в ней применены стандартизированные решения без особенностей. Схема ИБП построена под управлением микроконтроллера MDT10P73.

Схемотехника и ремонт бесперебойного блока питания

Блок-схема UPS N-Power SVP-625.

Рассматривая структурную схему, легко понять, что этот прибор относится к классу Line active. Сетевое напряжение, пройдя через фильтр, поступает на силовую высоковольтную обмотку, которая служит для входа и для выхода – в зависимости от режима. Схема AVR (автоматическая регулировка напряжения) в зависимости от уровня на входе, может подключить дополнительно к основной обмотке (синий и черный провода) регулировочную – провода белый и синий. В зависимости от входного уровня, дополнительная секция подключается к основной то в фазе, то в противофазе, добавляя или уменьшая напряжение на выходе. Коммутация осуществляется с помощью реле RY2 и RY3 (обозначения по принципиальной схеме). Реле RY1 замыкает вход и выход в нормальном режиме работы, при его размыкании потребители запитываются от аккумулятора через инвертор.

Зарядное устройство, построенное по принципу линейного стабилизатора, питается от дополнительной обмотки, от нее же питается схема формирования dead time (клампирование) – она нужна, чтобы исключить сквозной ток через транзисторы инвертора.

Схемотехника и ремонт бесперебойного блока питания

Выходное напряжение и нулевой уровень dead time.

Инвертор построен по пушпульной схеме. Ключами служат полевые транзисторы.

Схемотехника и ремонт бесперебойного блока питания

Диагностику надо начать с проверки предохранителей FUSE1 и FUSE2. Чаще всего они перегорают из-за выхода из строя транзисторов инвертора Q4..Q7. Обнаружив неисправность плавких вставок надо сразу протестировать и полевые транзисторы.

Дальнейшую диагностику лучше проводить исходя из внешних признаков неисправности. Если при включении ИБП не подает признаков работы (не слышен легкий гул трансформатора, не горят индикаторы) и предохранители исправны, проверяется:

  • наличие переменного напряжения на входе (контакты 3 и 4 клеммника CN1);
  • при его отсутствии проверяется сетевой шнур и его соединения;
  • если напряжение присутствует, проверяется наличие выходного напряжения на клеvмнике CN2 (контакты 1,2);
  • если его нет, проверяется исправность контактных групп реле RY1, RY2, RY3 и элементов входного фильтра CX1, MOV1, CY1, Cy2 и выходного фильтра CX2 и R100.

Если не заряжается заведомо исправная батарея и отсутствует индикация VBAT, проверяется:

  • наличие переменного напряжения на клеммнике CN1 контакты 3 и 4;
  • при его наличии – исправность диодного моста D5..D8;
  • если там все в порядке – наличие постоянного напряжения на входе и выходе микросхемы LM317 (U5);
  • при отсутствии напряжения на входе проверяется транзистор Q8 схемы CLAMP;
  • при отсутствии напряжения на выходе с большой вероятностью неисправна LM317.

Схемотехника и ремонт бесперебойного блока питания

Расположение элементов на печатной плате.

Если не происходит стабилизации напряжение при изменениях в сети, надо проверить исправность реле RY2, RY3 и транзисторных ключей Q11, Q12. Если все в порядке, надо проверить исправность датчика входного напряжения (сигнал HOT, операционный усилитель U2 формирует постоянное напряжение, пропорциональное сетевому). Если все в порядке, есть основания думать, что неисправен микроконтроллер.

Если при исчезновении питающей сети напряжение к потребителям не поступает, АКБ и датчик напряжения (тракт HOT-VIN) в порядке, проверяется исправность реле RY1, транзистора Q10 и наличие на затворе ключа сигнала на переключение. Если все в порядке, надо проверять, в порядке ли контроллер. Если переключение происходит, а переключения нет, проверяется:

  1. Наличие импульсов на затворах пар Q4Q5 и Q6Q7 (линии PSHPL2 и PSPHL1).
  2. Если их нет, проверяется исправность ключей микросхемы U3.
  3. Если все в порядке – снова проверяется контроллер.

Также могут быть и другие неисправности — проблемы с датчиком тока, с формированием управляющих сигналов, с питающими напряжениями и многое другое. Все перечислить и предугадать невозможно. Процесс поиска неисправности весьма творческий, и для успеха надо хорошо разобраться в работе схемы.

Найденные компоненты, вышедшие из строя, заменяют. Если это мощные транзисторы, эксплуатирующиеся на радиаторах, их сначала надо установить на теплоотвод на теплопроводящую пасту или упругую подложку, привинтить – а потом припаивать.

Схемотехника и ремонт бесперебойного блока питания

Мощные транзисторы на радиаторах в ИБП Powerman 600.

Самая сложная проблема – намоточные детали (дроссели, трансформаторы). Перемотка «на коленке» в большинстве случаев не дает надлежащего качества, и срок службы будет недолгим. Здесь поможет наличие прибора-«донора», из которого можно взять недостающие детали. Если неисправен микроконтроллер, новый чип придется запрограммировать. Для этого понадобится собственно программа прошивки, а также программатор с соответствующим ПО.

Для наглядности рекомендуем к просмотру тематические видео.

Если неисправен ИБП другого типа, ремонт начинается с поиска принципиальной схемы и ее изучения до полного понимания принципа действия. А данное руководство в этом поможет.

Внезапные отключения электроэнергии — не такое уж частое явление, но случаются они, обычно, в тот момент, когда долго вводимые перед этим данные не успели сохранить. Исключить такие ситуации призвано использование UPS (Uninterruptible Power Supply, он же ИБП – Источник Бесперебойного Питания), оберегающего компьютер от потери данных при исчезновении внешнего электроснабжения. Эти в целом надежные приборы иногда выходят из строя, а отремонтировать во многих случаях их можно самостоятельно.

Содержание

  • 1 Таблица неисправностей и возможных причин поломки
  • 2 Основные виды схем применяемых в ИБП
  • 3 Алгоритм ремонта источника бесперебойного питания

Таблица неисправностей и возможных причин поломки

Здесь и далее рассматриваются локальные UPS – предназначенные для питания одиночных ПК с периферией. Такие устройства применяются в офисах, их мощность не превышает 10 ватт.

Самые простые ситуации можно разрешить, не обладая специальными знаниями и навыками и не разбирая ИБП. Эти случаи сведены в таблицу.

Видимое проявление проблемы Возможная причина Способ устранения
UPS не включается или работает только от аккумулятора Неисправен сетевой шнур Заменить сетевой шнур
Перегорел плавкий предохранитель или сработало устройство защиты. Заменить предохранитель или взвести защитное устройство.
Отсутствует или неисправна батарея Установить исправную АКБ
При исправной батарее горит сигнал низкого уровня заряда Сбилась калибровка зарядного контроллера Восстановить калибровку с помощью ПО от производителя
Нет питания нагрузки при исчезновении напряжения сети (аккумулятор исправен) Сбой программного обеспечения Сбросить контроллер кнопкой «Сброс» (если есть) или перепрошить программу
Не заряжается АКБ Сбой программного обеспечения Сбросить контроллер кнопкой «Сброс» или перепрошить программу
ИБП отключается, горит значок перегрузки Излишняя нагрузка Уменьшить мощность нагрузки или количество потребителей

Не все УПС управляются программно. Недорогие модели собраны на дискретных элементах и микросхемах небольшой степени интеграции. Советы по перезагрузке, перепрошивке или настройке ПО к ним не относятся. Также надо учитывать, что одни и те же неисправности могут быть как при сбое работы ПО, так и при проблемах с «железом», поэтому сброс или перепрошивка – сродни первой медицинской помощи. Может помочь, а может не помочь. В этом случае понадобится глубокая диагностика и ремонт аппаратной части.

Схемотехника и ремонт бесперебойного блока питания

Кнопка взвода устройства защиты сети UPS APC.

Основные виды схем применяемых в ИБП

Если предварительное тестирование проведено, то можно попытаться провести более глубокую диагностику. Даже обладая специальными знаниями, полезным будет изучить общие принципы работы ИБП и принципиальные схемы конкретных приборов.

Для резервирования питания офисной техники применяются несколько типов бесперебойников, различающихся своей схемотехникой. Первый тип – Offline.

Схемотехника и ремонт бесперебойного блока питания

Структурная схема ИБП Offline.

Как и у всех УПС, в схеме имеется сетевой фильтр, зарядное устройство и батарея, которая питает преобразователь (инвертор) постоянного напряжения в переменное. В нормальном режиме выход преобразователя к нагрузке не подключен. При исчезновении питающей сети происходит переключение потребителей на питание от инвертора. Основной минус такого подхода – на переключение требуется время. Оно минимально для человеческого восприятия, но для техники может быть слишком большим. Некоторые устройства могут за это время отключиться или потерять данные. Зато эти бесперебойники простые, дешевые, надежные и ремонтопригодные.

ИБП, построенные по схеме Line interactive, работают по сходному принципу, но у них на входе установлен стабилизатор сетевого напряжения. Он построен по принципу переключения отводов первичной обмотки трансформатора. Поэтому при изменениях параметров сети потребители питаются стабильным напряжением, и переключение в автономный режим происходит только тогда, когда входной стабилизатор не может справиться. То есть, гораздо реже.

Схемотехника и ремонт бесперебойного блока питания

Работа UPS типа Line interactive в нормальном режиме и в режиме резервирования.

Самым дорогим, но и оптимальным способом построения резервного источника считается On-line. В этом случае батарея постоянно подзаряжается сетевым напряжением (буферный режим), а потребители постоянно питаются от инвертора стабилизированным напряжением. При исчезновении питания от сети не происходит переключения, бестоковая пауза отсутствует. Такие приборы эффективны, но дороговаты.

Схемотехника и ремонт бесперебойного блока питания

Блок-схема устройства On-line.

Алгоритм ремонта источника бесперебойного питания

Если есть подозрения на выход из строя (потерю емкости) аккумулятора, проверить его можно без разборки прибора. Для этого надо подержать UPS включенным в сеть 220 вольт до заведомо полной зарядки АКБ. Потом к разъему для нагрузки надо подключить лампы накаливания соответствующей мощности (для источника с выходной мощностью 600 ватт потребуется 10 стоваттных ламп) и дождаться появления сигнализации разряда батареи (Low battery level).

Светодиодные лампы непригодны для тестирования в таком режиме. Их потребляемая мощность недостаточна, разрядная батарея будет состоять из нерационально большого количества элементов.

Если время полного разряда существенно меньше заявленного в технической документации, значит, пришло время задуматься о скорой замене батареи. Если емкость снизилась до уровня, при котором время резервирования стало неприемлемым, менять аккумулятор придется срочно.

Если предварительные методы диагностики и ремонта результата не дали, можно разобрать UPS и попытаться протестировать более глубоко. Прежде надо здраво оценить свою квалификацию – если она недостаточна, возможно, поход в сервисный центр обойдется дешевле и быстрее.

Если решение починить прибор самостоятельно принято, надо изучить конструкцию корпуса бесперебойника. Некоторые приборы помещены в пластиковый кейс, скрепленный винтами.

Перед началом разборки отключить прибор от питающей сети 220 вольт, отключив сетевой шнур от розетки и от источника бесперебойного питания.

Чтобы снять крышку, надо перевернуть УПС и снизу отвернуть четыре винта (самореза). В некоторых устройствах крышка крепится на защелках, которые надо аккуратно оттянуть.

Схемотехника и ремонт бесперебойного блока питания

Винты крепления верхней панели.

Компоновка обычна для большинства недорогих UPS:

  • в верхнем отсеке находится плата с электроникой, на стенку выведены разъемы для слаботочных цепей;
  • в нижнем – аккумулятор, силовой трансформатор, на стенку выведены силовые разъемы.

Схемотехника и ремонт бесперебойного блока питания

Внутреннее пространство бесперебойника.

Если тест аккумулятора не проведен до разборки, его можно произвести сейчас, но понадобится набор лампочек на 12 вольт. Надо полностью зарядить АКБ и подключить к нему нагрузку из ламп. Контролируя напряжение на выходе, надо зафиксировать время разряда до 10,5 вольт. Емкость при этом вычисляется по формуле:

С=(P/12)*t, где:

  • С – фактическая емкость в ампер-часах;
  • P — мощность лампы, Вт;
  • 12 – напряжение АКБ, вольт;
  • t – время разряда, часов.

Еще лучше замерить ток разряда и подставить его в формулу вместо множителя P/12 в амперах. Решение о замене батареи принимается по тем же критериям, что и при тестировании без разборки.

Надо помнить, что некоторые ИБП вообще не включаются при отсутствии или серьезной неисправности аккумулятора. Поэтому поиск проблемы рекомендуется начать с тестирования АКБ.

Схемотехника и ремонт бесперебойного блока питания

Тестирование АКБ под нагрузкой из ламп на 12 вольт.

Компоновка аппарата APC Back Up 500 выполнена по-другому. Для аккумулятора предусмотрен отдельный отсек, добраться до него можно без разборки, просто отжав защелку крышки.

Схемотехника и ремонт бесперебойного блока питания

Отсек АКБ.

Входная силовая часть (фильтр и силовой трансформатор) расположены в другом отсеке.

Схемотехника и ремонт бесперебойного блока питания

Снятие задней крышки.

Чтобы до него добраться, надо вывинтить два самореза. Откроется ниша с элементами силовой цепи.

Схемотехника и ремонт бесперебойного блока питания

Расположение входных цепей и силового трансформатора.

Чтобы добраться до платы с электроникой, надо отжать защелки передней панели.

Схемотехника и ремонт бесперебойного блока питания

Снятие передней панели APC 500.

В приборах других производителей порядок разборки и расположение основных элементов может отличаться. На основании приведенных примеров разобраться не составит труда.

Диагностику прибора начинают с визуального осмотра. Так можно обнаружить:

  • отпаявшиеся провода;
  • вздувшиеся оксидные конденсаторы;
  • отгоревшие дорожки;
  • трещины;
  • обгоревшие компоненты.

Читайте такжеСхема бестрансформаторного источника питания

Если элемент обгорел, это не говорит однозначно о нем, как о виновнике неисправности. Проблема может быть в другом компоненте. Но уже так можно локализовать неисправность на участке схемы.

Если невооруженным глазом обнаружить проблему не удалось, надо анализировать схему. Пошаговую инструкцию в этом случае дать невозможно – схемы разнообразны, а потенциальные неисправности еще разнообразнее. Но общий принцип поиска проблемы разобрать вполне реально. Это будет сделано на примере UPS N-Power SVP-625 – в ней применены стандартизированные решения без особенностей. Схема ИБП построена под управлением микроконтроллера MDT10P73.

Схемотехника и ремонт бесперебойного блока питания

Блок-схема UPS N-Power SVP-625.

Рассматривая структурную схему, легко понять, что этот прибор относится к классу Line active. Сетевое напряжение, пройдя через фильтр, поступает на силовую высоковольтную обмотку, которая служит для входа и для выхода – в зависимости от режима. Схема AVR (автоматическая регулировка напряжения) в зависимости от уровня на входе, может подключить дополнительно к основной обмотке (синий и черный провода) регулировочную – провода белый и синий. В зависимости от входного уровня, дополнительная секция подключается к основной то в фазе, то в противофазе, добавляя или уменьшая напряжение на выходе. Коммутация осуществляется с помощью реле RY2 и RY3 (обозначения по принципиальной схеме). Реле RY1 замыкает вход и выход в нормальном режиме работы, при его размыкании потребители запитываются от аккумулятора через инвертор.

Зарядное устройство, построенное по принципу линейного стабилизатора, питается от дополнительной обмотки, от нее же питается схема формирования dead time (клампирование) – она нужна, чтобы исключить сквозной ток через транзисторы инвертора.

Схемотехника и ремонт бесперебойного блока питания

Выходное напряжение и нулевой уровень dead time.

Инвертор построен по пушпульной схеме. Ключами служат полевые транзисторы.

Схемотехника и ремонт бесперебойного блока питания

Диагностику надо начать с проверки предохранителей FUSE1 и FUSE2. Чаще всего они перегорают из-за выхода из строя транзисторов инвертора Q4..Q7. Обнаружив неисправность плавких вставок надо сразу протестировать и полевые транзисторы.

Дальнейшую диагностику лучше проводить исходя из внешних признаков неисправности. Если при включении ИБП не подает признаков работы (не слышен легкий гул трансформатора, не горят индикаторы) и предохранители исправны, проверяется:

  • наличие переменного напряжения на входе (контакты 3 и 4 клеммника CN1);
  • при его отсутствии проверяется сетевой шнур и его соединения;
  • если напряжение присутствует, проверяется наличие выходного напряжения на клеvмнике CN2 (контакты 1,2);
  • если его нет, проверяется исправность контактных групп реле RY1, RY2, RY3 и элементов входного фильтра CX1, MOV1, CY1, Cy2 и выходного фильтра CX2 и R100.

Если все в порядке, а индикации включения нет (Power), проверяется операционный усилитель U2 и его обвязка.

Если не заряжается заведомо исправная батарея и отсутствует индикация VBAT, проверяется:

  • наличие переменного напряжения на клеммнике CN1 контакты 3 и 4;
  • при его наличии – исправность диодного моста D5..D8;
  • если там все в порядке – наличие постоянного напряжения на входе и выходе микросхемы LM317 (U5);
  • при отсутствии напряжения на входе проверяется транзистор Q8 схемы CLAMP;
  • при отсутствии напряжения на выходе с большой вероятностью неисправна LM317.

Схемотехника и ремонт бесперебойного блока питания

Расположение элементов на печатной плате.

Если не происходит стабилизации напряжение при изменениях в сети, надо проверить исправность реле RY2, RY3 и транзисторных ключей Q11, Q12. Если все в порядке, надо проверить исправность датчика входного напряжения (сигнал HOT, операционный усилитель U2 формирует постоянное напряжение, пропорциональное сетевому). Если все в порядке, есть основания думать, что неисправен микроконтроллер.

При любых подозрениях об исправности контроллера, надо проверить наличие напряжения питания +5 вольт на выводе 20, наличие тактовых импульсов с частотой 20 МГц на выводах 9,10, а также всех входных сигналов, задающих режимы работы.

Если при исчезновении питающей сети напряжение к потребителям не поступает, АКБ и датчик напряжения (тракт HOT-VIN) в порядке, проверяется исправность реле RY1, транзистора Q10 и наличие на затворе ключа сигнала на переключение. Если все в порядке, надо проверять, в порядке ли контроллер. Если переключение происходит, а переключения нет, проверяется:

  1. Наличие импульсов на затворах пар Q4Q5 и Q6Q7 (линии PSHPL2 и PSPHL1).
  2. Если их нет, проверяется исправность ключей микросхемы U3.
  3. Если все в порядке – снова проверяется контроллер.

Также могут быть и другие неисправности — проблемы с датчиком тока, с формированием управляющих сигналов, с питающими напряжениями и многое другое. Все перечислить и предугадать невозможно. Процесс поиска неисправности весьма творческий, и для успеха надо хорошо разобраться в работе схемы.

Найденные компоненты, вышедшие из строя, заменяют. Если это мощные транзисторы, эксплуатирующиеся на радиаторах, их сначала надо установить на теплоотвод на теплопроводящую пасту или упругую подложку, привинтить – а потом припаивать.

Схемотехника и ремонт бесперебойного блока питания

Мощные транзисторы на радиаторах в ИБП Powerman 600.

Самая сложная проблема – намоточные детали (дроссели, трансформаторы). Перемотка «на коленке» в большинстве случаев не дает надлежащего качества, и срок службы будет недолгим. Здесь поможет наличие прибора-«донора», из которого можно взять недостающие детали. Если неисправен микроконтроллер, новый чип придется запрограммировать. Для этого понадобится собственно программа прошивки, а также программатор с соответствующим ПО.

Для наглядности рекомендуем к просмотру тематические видео.

Если неисправен ИБП другого типа, ремонт начинается с поиска принципиальной схемы и ее изучения до полного понимания принципа действия. А данное руководство в этом поможет.

Конструкция и ремонт источников бесперебойного питания АРС

UPS – Uninterruptible Power Supply (ИБП – Источник Бесперебойного Питания)

Описываемые модели:
APC Smart-UPS 450VA

APC Smart-UPS 620VA
APC Smart-UPS 700VA
APC Smart-UPS 1000VA
APC Smart-UPS 1400VA

APC Back-UPS BK250I
APC Back-UPS BK400I
APC Back-UPS BK600I

ИБП делятся на три основных класса: Off-line (или stand-by), Line-interactive и On-line. Эти устройства имеют различные конструкции и характеристики.

Конструкция и ремонт источников бесперебойного питания АРС

Блок-схема ИБП класса Off-line

В ИБП класса Off-line при работе в нормальном режиме нагрузка питается отфильтрованным напряжением электросети. Для подавления электромагнитных и радиочастотных помех во входных цепях используются фильтры EMI/RFI Noise на металло-оксидных варисторах. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. Форма его выходного напряжения – прямоугольные импульсы положительной и отрицательной полярности с амплитудой 300 В и частотой 50 Гц. ИБП класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых фирмой АРС ИБП класса Off-line модели Back-UPS находится в диапазоне 250…1250 ВА, а модели Back-UPS Pro -в диапазоне 250…1400 ВА.

Конструкция и ремонт источников бесперебойного питания АРСБлок-схема ИБП класса Line-interactive

ИБП класса Line-interactive так же, как и ИБП класса Off-line ретранслируют переменное напряжение электросети в нагрузку, поглощая при этом относительно небольшие всплески напряжения и сглаживая помехи. Входные цепи используют фильтр EMI/RFI Noise на металло-оксидных варисторах для подавления электромагнитных и радиочастотных помех. Если в электросети произошла авария, то ИБП синхронно, без потери фазы колебания, включает инвертор для питания нагрузки от батарей, при этом синусоидальная форма выходного напряжения достигается фильтрацией ШИМ-колебания. Схема использует специальный инвертор для подзарядки батареи, который работает и во время скачков сетевого напряжения. Диапазон работы без подключения батареи расширен за счет использования во входных цепях ИБП автотрансформатора с переключаемой обмоткой. Переход на питание от батареи происходит, когда напряжение электросети выходит за границы диапазона. Мощность выпускаемых фирмой АРС ИБП класса Line-interactive модели Smart-UPS составляет 250…5000 ВА.

Конструкция и ремонт источников бесперебойного питания АРСБлок-схема ИБП класса On-line

ИБП класса On-line преобразуют переменное входное напряжение в постоянное, которое затем с помощью ШИМ-инвертора преобразуется снова в переменное со стабильными параметрами. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения равно нулю. За счет инерционного звена постоянного тока, каким является батарея, происходит изоляция нагрузки от аномалий сети и формируется очень стабильное выходное напряжение. Даже при больших отклонениях входного напряжения ИБП продолжает питать нагрузку чистым синусоидальным напряжением с отклонением не более +5% от устанавливаемого пользователем номинального значения. ИБП класса On-line фирмы АРС имеют следующие выходные мощности: модели Matrix UPS – 3000 и 5000 ВА, модели Symmetra Power Array – 8000, 12000 и 16000 ВА.

Модели Back-UPS не используют микропроцессор, а в моделях Back-UPS Pro, Smart-UPS, Smart/VS, Matrix и Symmetna микропроцессор используется.
Наибольшее распространение получили устройства: Back-UPS, Back-UPS pro, Smart-UPS, Smart-UPS/VS.
Такие устройства, как Matrix и Symmetna, используются в основном для банковских систем.

Здесь рассмотрим конструкцию и схему моделей Smart-UPS 450VA…700VA, применяемых для питания персональных компьютеров (ПК) и серверов.

Технические характеристики моделей Smart-UPS фирмы АРС

Модель

450VA 620VA 700VA 1400VA
Допустимое входное напряжение, В

0…320

Входное напряжение при работе от сети *, В

165…283

Выходное напряжение *, В

208…253

Защита входной цепи от перегрузки

Возвращаемый в исходное положение автоматический выключатель

Диапазон частоты

при работе от сети, Гц

47…63

Время переключения на питание от батареи, мс

4

Максимальная мощность в нагрузке, ВА (Вт) 450(280) 620(390) 700(450) 1400(950)
Выходное напряжение при работе от батареи, В

230

Частота при работе от батареи, Гц

50 ± 0,1

Форма сигнала при работе от батареи

Синусоида

Защита выходной цепи от перегрузки

Защита от перегрузки и короткого замыкания, при перегрузке выключение с фиксацией

Тип батареи

Свинцовая герметичная, необслуживаемая

Количество батарей х напряжение, В, 2 x 12 2 x 6 2 x 12 2 x 12
Емкость батарей, Ач 4,5 10 7 17
Срок службы батареи, лет 3…5
Время полного заряда, ч 2…5
Размеры ИБП (высота х ширина х длина), см

16,8×11,9×36,8

15,8×13,7×35,8 21,6х17х43,9
Масса нетто (брутто), кг 7,30(9,12) 10,53(12,34) 13,1(14,5) 24,1(26,1)

* Регулируется пользователем с помощью программного обеспечения PowerChute.

ИБП Smart-UPS 450VA…700VA и Smart-UPS 1000VA…1400VA имеют одинаковую электрическую схему и отличаются емкостью батарей, количеством выходных транзисторов в инверторе, мощностью силового трансформатора и габаритами.

Рассмотрим параметры, характеризующие качество электроэнергии, а также терминологию и обозначения.

Проблемы с электропитанием могут выражаться в виде:

  • полного отсутствия входного напряжения – blackout;
  • временного отсутствия или сильного падения напряжения, вызванного включением в сеть мощной нагрузки (электромотора, лифта и т.п.) – sag или brownout;
  • мгновенного и очень мощного повышения напряжения, как при ударе молнии – spike;
  • периодического повышения напряжения, длящегося доли секунды, вызванного, как правило, изменениями нагрузки в сети – surge.

В России провалы, пропадания и скачки напряжения как вверх, так и вниз составляют приблизительно 95% отклонений от нормы, остальное – шумы, импульсные помехи (иголки), высокочастотные выбросы.

В качестве единиц измерения мощности используются Вольт-Амперы (ВА, VA) и Ватты (Вт, W). Они отличаются коэффициентом мощности PF (Power Factor): W = VA x PF.

Коэффициент мощности для компьютерной техники равен 0,6…0,7. Число в обозначении моделей ИБП фирмы АРС означает максимальную мощность в ВА. Например, модель Smart-UPS 600VA имеет мощность 400 Вт, а модель 900VA – 630 Вт.

Конструкция и ремонт источников бесперебойного питания АРССтруктурная схема моделей Smart-UPS и Smart-UPS/VS

В моделях Smart-UPS и Smart-UPS/VS сетевое напряжение поступает на входной фильтр EM/RFI, служащий для подавления помех электросети. При номинальном напряжении электросети включены реле RY5, RY4, RY3 (контакты 1, 3), RY2 (контакты 1, 3), RY1, и входное напряжение проходит в нагрузку. Реле RY3 и RY2 используются для режима подстройки выходного напряжения BOOST/TRIM. К примеру, если напряжение сети увеличилось и вышло за допустимый предел, реле RY3 и RY2 подключают дополнительную обмотку W1 последовательно с основной W2. Образуется автотрансформатор с коэффициентом трансформации K = W2/(W2 + W1) меньше единицы, и выходное напряжение падает. В случае уменьшения сетевого напряжения дополнительная обмотка W1 реверсируется контактами реле RY3 и RY2. Коэффициент трансформации К = W2/(W2 – W1) становится больше единицы, и выходное напряжение повышается. Диапазон регулировки составляет ±12%, величина гистерезиса выбирается программой Power Chute.

При пропадании напряжения на входе выключаются реле RY2…RY5, включается мощный ШИМ-инвертор, питающийся от батареи, и в нагрузку поступает синусоидальное напряжение 230 В, 50 Гц.

Входные цепиКонструкция и ремонт источников бесперебойного питания АРС

Включение процессораКонструкция и ремонт источников бесперебойного питания АРС

Выходной инверторКонструкция и ремонт источников бесперебойного питания АРС

Многозвенный фильтр подавления помех электросети состоит из варисторов MV1, МV3, MV4, дросселя L1, конденсаторов С14…С16. Трансформатор СТ1 анализирует высокочастотные составляющие напряжения сети. Трансформатор СТ2 является датчиком тока нагрузки. Сигналы с этих датчиков, а также датчика температуры RTH1 поступают на аналого-цифровой преобразователь IC10 (ADC0838).

Трансформатор Т1 является датчиком входного напряжения. Команда на включение устройства (АС-ОК) подается с двухуровневого компаратора IC7 на базу Q6. Трансформатор Т2 – датчик выходного напряжения для режима Smart TRIM/BOOST. С выводов 23 и 24 процессора IC1 сигналы BOOST и TRIM подаются на базы транзисторов Q43 и Q49 для переключения реле RY3 и RY2 соответственно.

Сигнал синхронизации по фазе (PHAS-REF) с вывода 5 трансформатора Т1 поступает на базу транзистора Q41 и с его коллектора на вывод 14 процессора IC12.

В модели Smart-UPS используется микропроцессор IC12 (S87C654), который:

  • контролирует наличие напряжения в электросети. Если оно пропадает, то микропроцессор подключает мощный инвертор, работающий от батареи;
  • включает звуковой сигнал для уведомления пользователя о проблемах с электропитанием;
  • обеспечивает безопасное автоматическое закрытие операционной системы (Netware, Windows NT, OS/2, Scounix и Unix Ware, Windows 95/98), сохраняя данные через двунаправленный коммутационный порт при наличии установленной программы Power Chute plus;
  • автоматически корректирует падения (режим Smart Boost) и превышения (режим Smart Trim) напряжения электросети, доводя выходное напряжение до безопасного уровня без перехода на работу от батареи;
  • контролирует заряд батареи, тестирует ее реальной нагрузкой и
  • защищает ее от перезаряда, обеспечивая непрерывную зарядку;
  • обеспечивает режим замены батарей без отключения питания;
    проводит самотестирование (каждые две недели или по нажатию кнопки Power) и выдает предупреждение о необходимости замены батареи;
  • индицирует уровень подзарядки батареи, напряжения в сети, нагрузки ИБП (количество подключенного к ИБП оборудования), режим питания от батареи и необходимость ее замены.

В микросхеме памяти EEPROM IC13 хранятся заводские установки, а также калиброванные установки уровней сигналов частоты, выходного напряжения, границ перехода, напряжения зарядки батареи.

Цифро-аналоговый преобразователь IC15 (DAC-08CN) формирует на выводе 2 эталонный синусоидальный сигнал, который используется как опорный для IC17 (АРС2010).

ШИМ-сигнал формируется IC14 (АРС2020) совместно с IC17. Мощные полевые транзисторы Q9…Q14, Q19…Q24 образуют мостовой инвертор. Во время положительной полуволны ШИМ-сигнала открыты Q12…Q14 и Q22…Q24, a Q19…Q21 и Q9…Q11 закрыты. Во время отрицательной полуволны открыты Q19…Q21 и Q9…Q11, a Q12…Q14 и Q22…Q24 закрыты. Транзисторы Q27…Q30, Q32, Q33, Q35, Q36 образуют двухтактные драйверы, формирующие сигналы управления мощными полевыми транзисторами, имеющими большую входную емкость. Нагрузкой инвертора является обмотка трансформатора, она подключается проводами W5 (желтый) и W6 (черный). На вторичной обмотке трансформатора формируется синусоидальное напряжение 230 В, 50 Гц для питания подключенного оборудования.

Работа инвертора в «обратном» режиме используется для зарядки батареи пульсирующим током во время нормальной работы ИБП.

ИБП имеет встроенный слот SNMP, который позволяет подключать дополнительные платы для расширения возможностей ИБП:

  • адаптер Power Net SNMP, поддерживающий прямое соединение с сервером на случай аварийного закрытия системы;
  • расширитель интерфейса ИБП, обеспечивающий управление до трех серверов;
  • устройство дистанционного управления Call-UPS, обеспечивающее удаленный доступ через модем.

В ИБП имеется несколько напряжений, необходимых для нормальной работы устройства: 24 В, 12 В, 5 В и -8 В. Для их проверки можно воспользоваться таблицей ниже. Измерять сопротивление с выводов микросхем на общий провод следует при выключенном ИБП и разряженном конденсаторе С22.

Напряжения в контрольных точках

Напряжение Микросхема/вывод Сопротивление на общий провод Возможные неисправные компоненты
24 В IC4/1 1 МОм С41, С36, С63, IC4, SNMP, плата дисплея с гибким кабелем, вентилятор
12 В IC4/3 1 кОм IC5, С8, D401, IC2, Q9…Q14, Q19…Q24
5 В IC5/3 1 кОм D402, С65, IC12, IC5, IC10, IC13(перепрограммировать)
-8 В IC17/1 15 кОм С7, Q39, Q40, С54, С53, D28, D27, IC9, IC17

Типовые неисправности ИБП Smart-Ups 450VA…700VA

Краткое описание дефекта Возможная причина Способ отыскания и устранения неисправности
ИБП не включается Не подключены батареи Подключить батареи
Плохая или неисправная батарея, мала ее емкость Заменить батарею. Емкость заряженной батареи можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
Пробиты мощные полевые транзисторы инвертора В этом случае на выводах батареи, подключенной к плате ИБП, нет напряжения. Проверить омметром и заменить транзисторы. Проверить резисторы в цепях их затворов. Заменить IC16
Обрыв гибкого кабеля, соединяющего дисплей Эта неисправность может быть вызвана замыканием выводов гибкого кабеля на шасси ИБП. Заменить гибкий кабель, соединяющий дисплей с основной платой ИБП. Проверить исправность предохранителя F3 и транзистора Q5
Продавлена кнопка включения Заменить кнопку SW2
ИБП включается только от батареи Сгорел предохранитель F3 Заменить F3. Проверить исправность транзисторов Q5 и Q6
ИБП не стартует. Светится индикатор замены батареи Если батарея исправна, то ИБП неверно отрабатывает программу Сделать калибровку напряжения батареи при помощи фирменной программы от АРС
ИБП не включается в линию Оторван сетевой кабель или нарушен контакт Соединить сетевой кабель. Проверить омметром исправность пробки-автомата. Проверить соединение шнура «горячий-нейтраль»
Холодная пайка элементов платы Проверить исправность и качество паек элементов L1, L2 и особенно Т1
Неисправны варисторы Проверить или заменить варисторы MV1…MV4
При включении ИБП происходит сброс нагрузки Неисправен датчик напряжения Т1 Заменить Т1. Проверить исправность элементов: D18…D20, С63 и С10
Мигают индикаторы дисплея Уменьшилась емкость конденсатора С17 Заменить конденсатор С17
Вероятна утечка конденсаторов Заменить С44 или С52
Неисправны контакты реле или элементы платы Заменить реле. Заменить IC3 и D20. Диод D20 лучше заменить на 1N4937
Перегрузка ИБП Мощность подключенного оборудования превышает номинальную Уменьшить нагрузку
Неисправен трансформатор Т2 Заменить Т2
Неисправен датчик тока СТ1 Заменить СТ1 . Сопротивление более 4 Ом указывает на неисправность датчика тока
Неисправна IC15 Заменить IC15. Проверить напряжение -8 В и 5 В. Проверить и при необходимости заменить: IC12, IC8, IC17, IC14 и мощные полевые транзисторы инвертора. Проверить обмотки силового трансформатора
Не заряжается батарея Неверно работает программа ИБП Откалибровать напряжение батареи фирменной программой от АРС. Проверить константы 4, 5, 6, 0. Константа 0 критична для каждой модели ИБП. Проверку константы делать после замены батареи
Вышла из строя схема заряда батареи Заменить IC14. Проверить напряжение 8 В на выв. 9 IC14, если его нет, то заменить С88 или IC17
Неисправна батарея Заменить батарею. Ее емкость можно проверить лампой дальнего света от автомобиля (12 В, 150 Вт)
Неисправен микропроцессор IC12 Заменить IC12
При включении ИБП не стартует, слышен щелчок Неисправна схема сброса Проверить исправность и заменить неисправные элементы: IC11, IC15, Q51…Q53, R115, С77
Дефект индикаторов Неисправна схема индикации Проверить и заменить неисправные Q57…Q60 на плате индикаторов
ИБП не работает в режиме On-line Дефект элементов платы Заменить Q56. Проверить исправность элементов: Q55, Q54, IC12. Неисправна IC13, или ее придется перепрограммировать. Программу можно взять с исправного ИБП
При переходе на работу от батареи ИБп выключается и включается самопроизвольно Пробит транзистор Q3 Заменить транзистор Q3

УСТРОЙСТВО ИБП КЛАССА OFF-LINE

К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в таблице.

Основные технические данные ИБп класса Back-UPS

Модель BK250I BK400I BK600I
Номинальное входное напряжение, В 220…240 
Номинальная частота сети, Гц 50
Энергия поглощаемых выбросов, Дж 320
Пиковый ток выбросов, А 6500
Пропущенные в нормальном режиме значения выбросов напряжения по тесту IEEE 587 Cat. A 6kVA, %

<1

Напряжение переключения, В 166…196
Выходное напряжение при работе от аккумуляторов, В 225 ± 5%
Выходная частота при работе от аккумуляторов, Гц 50 ± 3%
Максимальная мощность, ВА (Вт) 250(170) 400(250) 600(400)
Коэффициент мощности 0,5. ..1,0 
Пик-фактор <5
Номинальное время переключения, мс 5
Количество аккумуляторов х напряжение, В 2×6 1×12 2×6
Емкость аккумуляторов, Ач 4 7 10
Время 90-% подзарядки после разрядки до 50%, час 6 7 10
Акустический шум на расстоянии 91 см от устройства, дБ <40 
Время работы ИБП на полную мощность, мин >5
Максимальные габариты (В х Ш х Г), мм

168x119x361

Вес, кг 5,4 9,5 11,3

Индекс «I» (International) в названиях моделей ИБП означает, что модели рассчитаны на входное напряжение 230 В, в устройствах установлены герметичные свинцовые необслуживаемые аккумуляторы со сроком службы 3…5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБП переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.

Структурная схема ИБП Back-UPS 250I, 400I и 600IКонструкция и ремонт источников бесперебойного питания АРС

Сетевое напряжение поступает на входной многоступенчатый фильтр через прерыватель цепи. Прерыватель цепи выполнен в виде автоматического выключателя на задней панели ИБП. В случае значительной перегрузки он отключает устройство от сети, при этом контактный столбик выключателя выталкивается вверх. Чтобы включить ИБП после перегрузки, необходимо вернуть в исходное положение контактный столбик выключателя. Во входном фильтре-ограничителе электромагнитных и радиочастотных помех используются LC-звенья и металлооксидные варисторы. При работе в нормальном режиме контакты 3 и 5 реле RY1 замкнуты, и ИБП передает в нагрузку напряжение электросети, фильтруя высокочастотные помехи. Зарядный ток поступает непрерывно, пока в сети есть напряжение. Если входное напряжение падает ниже установленной величины или вообще исчезает, а также если оно сильно зашумлено, контакты 3 и 4 реле замыкаются, и ИБП переключается на работу от инвертора, который преобразует постоянное напряжение аккумуляторов в переменное. Время переключения составляет около 5 мс, что вполне приемлемо для современных импульсных блоков питания компьютеров. Форма сигнала на нагрузке – прямоугольные импульсы положительной и отрицательной полярности с частотой 50 Гц, длительностью 5 мс, амплитудой 300 В, эффективным напряжением 225 В. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до 208 В. В отличие от моделей Smart-UPS, в Back-UPS нет микропроцессора, для управления устройством используются компараторы и логические микросхемы.

Принципиальная схема ИБП Back-UPS 250I, 400I и 600I

Выходной инверторКонструкция и ремонт источников бесперебойного питания АРС

Входные цепиКонструкция и ремонт источников бесперебойного питания АРС

Схема управленияКонструкция и ремонт источников бесперебойного питания АРС

Многозвенный фильтр подавления помех электросети состоит из варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 9). Трансформатор Т1 (рис. 10) является датчиком входного напряжения. Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4…D8, IC1, R9…R11, С3 и VR1) и анализа сетевого напряжения.

Если оно пропадает, то схема на элементах IC2…IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1 ) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.

Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.

Во время работы от батареи микросхема IC7 формирует импульсы возбуждения инвертора PUSHPL1 и PUSHPL2. В одном плече инвертора установлены мощные полевые транзисторы Q4…Q6 и Q36, в другом -Q1…Q3 и Q37. Своими коллекторами транзисторы нагружены на выходной трансформатор. На вторичной обмотке выходного трансформатора формируется импульсное напряжение с эффективным значением 225 В и частотой 50 Гц, которое используется для питания подключенного к ИБП оборудования. Длительность импульсов регулируется переменным резистором VR3, а частота – резистором VR4 (рис. 10). Включение и выключение инвертора синхронизируется с напряжением сети схемой на элементах IC3 (выводы 3…6), IC6 (выводы 3…5, 6, 8, 9) и IC5 (выводы 1…3 и 11…13). Схема на элементах SW1 (выводы 1 и 8), IC5 (выводы 4…В и 8…10), IC2 (выводы 8…10), IC3 (выводы 1 и 2), IC10 (выводы 12 и 13), D30, D31, D18, Q9, BZ1 включает звуковой сигнал, предупреждающий пользователя о проблемах с электропитанием. Во время работы от батареи ИБП каждые 5 с издает одиночный звуковой сигнал, указывающий на необходимость сохранения файлов пользователя, т.к. емкость аккумуляторов ограничена. При работе от батареи ИБП осуществляет контроль за ее емкостью и за определенное время до ее разряда подает непрерывный звуковой сигнал. Если выводы 4 и 5 переключателя SW1 разомкнуты, то это время составляет 2 минуты, если замкнуты – 5 минут. Для отключения звукового сигнала надо замкнуть выводы 1 и 8 переключателя SW1.

Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. Этот порт обозначен как J14. Назначение его выводов:

1 – UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.
2 – AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».
3 – СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
4, 9 – DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.
5 – СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.
6 – ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.
7, 8 – не подключены.

Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.

Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.

КАЛИБРОВКА И РЕМОНТ ИБП

Установка частоты выходного напряжения
Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.

Установка значения выходного напряжения
Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.

Установка порогового напряжения
Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.

Установка напряжения заряда
Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.

Типовые неисправности ИБП Back-UPS 250I, 400I и 600I

Проявление дефекта Возможная причина Метод отыскания и устранения дефекта
Запах дыма, ИБП не работает Неисправен входной фильтр Проверить исправность компонентов MOV2, MOV5, L1, L2, С38, С40, а также проводники платы, соединяющие их
ИБП не включается. Индикатор не светится Отключен автомат защиты на входе (прерыватель цепи) ИБП Уменьшить нагрузку ИБП, отключив часть аппаратуры, и затем включить автомат защиты, нажав контактный столбик автомата защиты
Неисправны батареи аккумуляторов Заменить аккумуляторы
Неправильно подключены аккумуляторы Проверить правильность подключения аккумуляторных батарей
Неисправен инвертор Проверить исправность инвертора. Для этого отключить ИБП от сети переменного тока, отсоединить аккумуляторы и разрядить емкость С3 резистором 100 Ом, прозвонить омметром каналы «сток-исток» мощных полевых транзисторов Q1…Q6, Q37, Q36. Если сопротивление составляет несколько Ом или меньше, то транзисторы заменить. Проверить резисторы в затворах R1 …R3, R6…R8, R147, R148. Проверить исправность транзисторов Q30, Q31 и диодов D36…D38 и D41. Проверить предохранители F1 и F2
Заменить микросхему IC2
При включении ИБП отключает нагрузку Неисправен трансформатор Т1 Проверить исправность обмоток трансформатора Т1. Проверить дорожки на плате, соединяющие обмотки Т1. Проверить предохранитель F3
ИБП работает от аккумуляторов несмотря на то, что есть напряжение в сети Напряжение в электросети очень низкое или искажено Проверить входное напряжение с помощью индикатора или измерительного прибора. Если это допустимо для нагрузки, уменьшить чувствительность ИБП, т.е. изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства
ИБП включается, но напряжение в нагрузку не поступает Неисправно реле RY1 Проверить исправность реле RY1 и транзистора Q10 (BUZ71). Проверить исправность IC4 и IC3 и напряжение питания на их выводах
Проверить дорожки на плате, соединяющие контакты реле
ИБП жужжит и/или отключает нагрузку, не обеспечивая ожидаемого времени резервного электропитания Неисправен инвертор или один из его элементов См. подпункт «Неисправен инвертор»
ИБП не обеспечивает ожидаемого времени резервного электропитания Аккумуляторные батареи разряжены или потеряли емкость Зарядите аккумуляторные батареи. Они требуют перезарядки после продолжительных отключений сетевого питания. Кроме того, батареи быстро стареют при частом использовании или при эксплуатации в условиях высокой температуры. Если приближается конец срока службы батарей, то целесообразно их заменить, даже если еще не подается тревожный звуковой сигнал замены аккумуляторных батарей. Емкость заряженной батареи проверить автомобильной лампой дальнего света 12 В, 150 Вт
ИБП перегружен Уменьшить количество потребителей на выходе ИБП
После замены аккумуляторов ИБП не включается Неправильное подключение аккумуляторных батарей при их замене Проверьте правильность подключения аккумуляторных батарей
При включении ИБП издает громкий тональный сигнал, иногда с понижающимся тоном Неисправны или сильно разряжены аккумуляторные батареи Зарядить аккумуляторные батареи в течение не менее четырех часов. Если после перезарядки проблема не исчезнет, следует заменить аккумуляторные батареи
Аккумуляторные батареи не заряжаются Неисправен диод D8 Проверить исправность D8. Его обратный ток не должен превышать 10 мкА
Напряжение заряда ниже необходимого уровня Откалибровать напряжение заряда аккумулятора

Аналоги для замены неисправных компонентов

Схемное обозначение Неисправный компонент Возможная замена
IC1 LM317T LM117H, LM117K
IC2 CD4001 К561ЛЕ5
IC3, IC10 74С14 Составляется из двух микросхем К561ТЛ1, выводы которых соединить согласно цоколевке на микросхему
IC4 LM339 К1401СА1
IC5 CD4011 К561ЛА7
IC6 CD4066 К561КТ3
D4…D8, D47, D25…D28 1N4005 1N4006, 1N4007, BY126, BY127, BY133, BY134, 1N5618… 1N5622, 1N4937
Q10 BUZ71 BUZ10, 2SK673, 2SK971, BUK442…BUK450, BUK543…BUK550
Q22 IRF743 IRF742, MTP10N35, MTP10N40, 2SK554, 2SK555
Q8, Q21, Q35, Q31, Q12, Q9, Q27, Q28, Q32, Q33 PN2222 2N2222, BS540, BS541, BSW61…BSW 64, 2N4014
Q11, Q29, Q25, Q26, Q24 PN2907 2N2907, 2N4026…2N4029
Q1…Q6, Q36, Q37 IRFZ42 BUZ11, BUZ12, PRFZ42

ИБП предназначен для преобразования сетевого напряжения 220V в напряжения необходимые для стабильной работы подключенных к нему потребителей. Также PSU обеспечивает стабилизацию выходных напряжений, осуществляет защиту от коротких замыканий, выдает необходимую мощность, в зависимости от присоединенной нагрузки.

Данный материал подготовлен преподавателями Bgacenter, в рамках курса – ремонт импульсных блоков питания.

Импульсный блок питания

Для обеспечения нагрузки майнеров применяются ИБП различной мощности. В данном материале подробно рассматривается БП применяемый для разных моделей асиков.

В конструкцию ИБП APW7 входит:

  • корпус – из экранированной металлической коробки
  • печатная плата ИБП имеет установленные радиотехнические компоненты
  • система охлаждения состоит из принудительного вентилятора
  • провода необходимые для подключения нагрузки

Основную функцию выполняет плата с расположенными на ней элементами.

Сторона монтажа APW7

Сторона монтажа APW7

Элементы расположенные на печатной плате ИБП:

  1. FUSE предохранитель
  2. Варистор
  3. Конденсатор сетевого фильтра
  4. Дросселя
  5. Блокировочные конденсаторы
  6. Конденсатор сглаживающий
  7. Фильтрующие конденсаторы
  8. Силовые транзисторы
  9. Разъем для подключения вентилятора
  10. Сглаживающие конденсаторы синхронного выпрямителя
  11. Выходной трансформатор
  12. Диод
  13. PFC транзистор
  14. Терморезисторы NTC
  15. Реле
  16. Дроссель схемы PFC
  17. Диодный мост

Сторона печати APW7

Сторона печати APW7

Как работает ИБП

Итак, импульсный блок питания APW7 работает по следующему принципу:

  1. Схема защиты от превышения напряжения и короткого замыкания. Схема состоит из варистора и предохранителя в термоусадочной трубке. При превышении напряжения свыше 350 V срабатывает варистор (пробивается), предохранитель перегорает, защищая плату ИБП от повышенного напряжения. В таком случае, ремонт состоит из замены предохранителя.
  2. Следующий блок – это схема сетевого фильтра. В нее входит конденсатор два дросселя, еще один конденсатор и ряд блокировочных конденсаторов предназначенных для устранения сетевых помех и выбросов помех от блока питания в сеть. При незначительных скачках напряжения дроссель старается увеличить свое магнитное поле, в результате этого все повышенное напряжение поступающее из сети скачкообразно гасится на нем. Конденсаторы сглаживают выбросы от работы импульсного преобразователя и препятствуют проникновению в сеть.
  3. После сетевого фильтра стоят терморезисторы с отрицательным сопротивлением (NTC), которые работают на уменьшение сопротивления при нагреве. Это необходимо для ограничения тока через диодный мост в первоначальный момент зарядки конденсаторов сглаживающего фильтра, стоящих после диодного моста.
  4. Затем идет выпрямительный диодный мост, на нем получаем из переменного постоянное напряжение. Это напряжение на начальном этапе сглаживается фильтрующими конденсаторами большой емкости 470 мкФ на 450 V каждый. В этот момент времени на конденсаторах появляется напряжение порядка 315 V. 
  5. Так как у ИБП кроме активной мощности существует реактивная, что отрицательно сказывается для работы. Конструктивно это устраняется за счет схемы PFC (Power Factor Correction) – Коррекция фактора мощности. В данном ИБП она сконструирована на задающей микросхеме импульсов и полевого транзистора. Перед транзистором установлен мощный дроссель высокой индуктивности. В результате работы данной схемы, напряжение на конденсаторах фильтра возрастает до 390 Вольт и оно теперь является основным для питания схем преобразователя постоянного тока.
  6. Для работы ШИМ контроллера необходимо использовать постоянное напряжение +12 Вольт. Это напряжение формируется на вспомогательном трансформаторе и выпрямляется диодами. Также данное напряжение необходимо для питания системы охлаждения (вентилятора).
  7. От 12 Вольт вспомогательного источника питается схема ШИМ-контроллера, которая формирует импульсы для преобразователя постоянного тока, состоящего из силового трансформатора и двух полевых транзисторов. Импульсы подаются от ШИМ контроллера на задающий генератор. А уже с задающего генератора импульсы поступают на затворы транзисторов которые управляют силовым трансформатором.
  8. Импульсное напряжение полученное на вторичной обмотке трансформатора , за счет работы однотактного прямого преобразователя, поступает на схему синхронного выпрямителя. Где напряжение сглаживается синхронным фильтром построенным на конденсаторах и поступает на выходные клеммы для питания хешплат. Обратная связь и стабилизация напряжения осуществляется через схему ШИМ контроллера.
  9. Синхронный выпрямитель управляется от схемы формирователя постоянного тока.

Неисправности ИБП

Для импульсных блоков питания характерны следующие неисправности:

  • выход из строя диодного моста
  • поломка PFC транзистора
  • пробой силовых транзисторов
  • короткозамкнутые витки силового трансформатора или его обрыв
  • перегорание синхронного выпрямителя
  • изменение номинала емкости фильтра синхронного выпрямителя
  • отсутствие запускающих импульсов в ШИМ-контроллерах, вспомогательного источника 12V и основного 
  • неисправность реле (слышны щелчки, но ИБП не включается)
  • выгорание контактов клемм присоединяемой нагрузки
  • не держит нагрузку
  • не работает система охлаждения при исправном вспомогательном источнике 12 V
  • обрыв SMD резисторов питающих микросхемы ШИМ
  • неисправность SMD транзисторов в каскадах согласования

Диагностика ИБП

Ремонт блока питания APW7 начинается с внешнего осмотра. Следует обратить внимание на наличие механических повреждений и ранее выполнявшиеся ремонты. По отсутствию герметика и не отмытому флюсу, можно предположить, что ранее проводился ремонт – плату паяли. Диагностику платы начинаем с нахождения конденсаторов фильтра питания. Как правило они имеют большой размер. Смотрим номиналы его, как видим из надписи на конденсаторе он имеет параметры 450V 470 мкФ каждый.

Фильтрующие конденсаторы диодного моста

Фильтрующие конденсаторы диодного моста

Для дальнейшего ремонта необходимо произвести его разряд, независимо от времени его нахождения в нерабочем состоянии. Тестером в режиме измерения постоянного напряжения убеждаемся в отсутствие напряжения на выводах конденсаторов. Для этого подключаем прибор со стороны печатной платы. Если есть напряжение, разряжаем конденсатор при помощи лампы накаливания мощностью 60W и проверяем заново тестером на отсутствие напряжения.

Только после этой процедуры можно выполнять дальнейший ремонт. Для облегчения поиска неисправности убеждаемся косвенно в отсутствие КЗ по цепи основного питания синхронного выпрямителя по основной цепи +12V. 

Для этого черный щуп прикладываем к выводу расположенному внизу, а красный к выводу расположенному вверху, мы должны увидеть исправные полевые транзисторы (показания мультиметра MS-319 (стрелочный), должно быть порядка 20 Ом). 

Замер выходного сопротивления по цепи 12V

Замер выходного сопротивления по цепи 12V

Меняем местами щупы, происходит заряд конденсаторов и сопротивление увеличилось, это говорит о исправности выпрямителя.

Разряд конденсаторов выходного выпрямителя

Разряд конденсаторов выходного выпрямителя

Продолжаем ремонт, приступаем к диагностике силовой части. Тестером от разъема питания сети в режиме прозвонки проверяем вход одного провода до диодного моста (вход переменного обозначения). Тестер должен показывать 0 (или издать своеобразный звуковой сигнал), что сразу говорит о исправности одной цепи фильтра индуктивности и целостности печатного проводника и предохранителя. 

Проверка целостности предохранителя и LC фильтра до входа диодного моста

Проверка целостности предохранителя и LC фильтра до входа диодного моста

Аналогично проверяем второй провод, но на другой вывод диодного моста. Это говорит о исправности второго проводника.

Проверка провода и LC фильтра

Проверка провода и LC фильтра

Ремонт необходим, если мультиметр показал отличные от нуля значения. В таком случае ищем обрыв, устраняем его. В данном случае все исправно.

Далее проверяем сопротивление между двумя сетевыми контрольными точками входа. Оно должно быть высоким (тестер в режиме МОм). Измерение показало в данном случае высокое сопротивление. Это говорит об отсутствии КЗ на входе и исправности варистора. Убедившись в исправности входного блока проверяем диодный мост. 

Проверка варистора на отсутствие КЗ

Проверка варистора на отсутствие КЗ

Методика проверки диодного моста стандартная, режим диодной прозвонки. Убедившись в его исправности исследуем блок PFC и его цепи. Проверяем MOSFET (полевой транзистор). Ставим щупы между затвором и истоком, потом затвором и стоком – сопротивление должно быть высоким и тестер нам ничего не показывает. Это правильно.

Измерение сопротивления между затвором и стоком

Измерение сопротивления между затвором и стоком

Далее проверяем Сток-Исток. При приложении к истоку красного щупа, а к стоку черного, мы увидим падение напряжения на диоде порядка 0.470 mV. В обратном приложении щупов мы не увидим никаких падений. Делаем вывод о исправности транзистора.

Проверка Сток-Исток полевого транзистора

Проверка Сток-Исток полевого транзистора

Для измерения импульсов управления на затворе данного транзистора необходимо применить осциллограф. Если импульсы есть делаем вывод о исправности микросхемы и подачи импульса на затвор полевого транзистора.

Проверка ШИМ PFC

Проверка ШИМ PFC

Далее проверяем цепь вспомогательного источника питания +12V, собранного на микросхеме ICE2QR4765 указанной по схеме принципиальной. Для этого в режиме диодной прозвонки ставим один щуп на + высоковольтного конденсатора, а второй на вывод 4 данной микросхемы ШИМ, убеждаемся в целостности обмотки трансформатора вспомогательного источника.

Проверка цепи питания микросхемы ШИМ и целостностности обмотки трансформатора вспомогательного источника питания

Проверка цепи питания микросхемы ШИМ и целостности обмотки трансформатора вспомогательного источника питания

Ремонт необходимо проводить при разряженном высоковольтном конденсаторе и отключенным ИБП от сети!

После этого проверяем работу основного ШИМ и цепей его питания согласно схемы электрической принципиальной. Далее проверяем полу мостовую схему на транзисторах MOSFET. Проверяются они при помощи мультиметра в режиме диодной прозвонки. Первоначально для каждого транзистора проверяем переход Затвор-Исток, мультиметр должен показать OL, это говорит о исправности перехода (он не пробит).

Измерение Затвор-Сток

Измерение Затвор-Сток

Следующий шаг, в режиме измерения сопротивления проверяем Затвор-Исток. Одновременно проверяем сопротивление согласующего драйвера. Сопротивление исправного выхода должно быть от 10 до 20 Ом.

Проверка Затвор-Исток

Проверка Затвор-Исток

Как видно из измерений, это косвенно говорит о исправности транзисторов. В случае сомнения в исправности транзисторов, их необходимо выпаять, проверить отдельно. Для проверки транзисторов применяется цифровой измеритель LCR-T4.

LCR-T4

LCR-T4

Затем проверяем переход Сток-Исток на предмет короткого замыкания. Для этого устанавливаем красный щуп мультиметра на Исток, а черный подсоединяем к Стоку. Падение напряжения в режиме диодной прозвонки должно быть 0,434 V. Это говорит о исправности полевого транзистора. 

Измерение перехода Сток-Исток

Измерение перехода Сток-Исток

При приложении щупов в обратном направлении мультиметр показывает OL.

Проверка перехода в обратном направлении

Проверка перехода в обратном направлении

Как проверить блок питания

После успешного определения неисправностей и ремонта поврежденных элементов, блок необходимо протестировать. Для этого ИБП подключают через развязывающий трансформатор к питанию сети. Затем к PSU подключают электронную нагрузку необходимой мощности, для проверки на работоспособность. Тестирование выполняется на протяжении 1-2 часа. Для исключения повторного ремонта, не рекомендуется включать ИБП без подключенной нагрузки. 

Пайка блоков питания

Во время ремонта ИБП возникает необходимость проверки элементов. Для этого необходимо выпаять соответствующий элемент с печатной платы. Пайку важно производить аккуратно, используя паяльник требуемой мощности: 

  • от 80 Ватт – для ремонта силовых элементов: трансформатор, силовые транзисторы, выходные диоды, диодный мост, сглаживающие конденсаторы; 
  • до 60 Ватт (или термовоздушную паяльную станцию) – для ремонта компонентов малой и средней мощности. 

Если ИБП работал с нарушением температурных режимов (перегревался), то при удалении компаунда возможен отрыв SMD компонентов с печатной платы. Важно помнить про это, а при дальнейшем ремонте восстановить обвязку на плату.

При ремонте ИБП используется сплав Розе, для уменьшения температуры заводского припоя и исключения повреждения подводящих проводников. 

При монтаже необходимо припаивать на:

  • паяльную пасту с температурой плавления 183 градуса Цельсия – элементы малой мощности
  • ПОС 61-63 (Pb 61-63/ Sn 40) – силовые электронные компоненты.

После ремонта, перед проведением измерений на транзисторах, важно понизить температуру ИБП, так как в нагретом состоянии, ключи открыты.

Перед пайкой вновь устанавливаемых компонентов (транзисторов) их выводы нужно зачистить и залудить.

После пайки, необходимо отмыть спиртом или другим очистителем те места где выполнялась пайка.

Оборудование для ремонта ИБП

Используемое во время ремонта ИБП оборудование, расходные материалы:

  • набор отверток
  • бокорезы 
  • пассатижи
  • разрядная лампа
  • мультиметр
  • осциллограф
  • LCR-T4
  • SMD-tester 3910
  • паяльник от 80 Ватт
  • фен термовоздушной станции Quick 857DW+
  • микроскоп СМ0745
  • бор-машинка
  • оловоотсос электрический
  • пинцет
  • зонд стоматологический (зубочистки деревянные)
  • флюс паяльный
  • паста BGA
  • очиститель платы Falcon 530
  • зубная щетка
  • оплетка медная шириной 1,5 и 3,0 мм
  • сплав Розе 
  • ацетон для смывания лака

Выводы:

  • ИБП – сложное электронное устройство. Ремонт импульсного блока питания в случае возникновения неисправности, необходимо выполнять зная принцип его узлов и элементной базы 
  • Для определения неисправности ИБП важно соблюдать технику безопасности, так как имеются опасные напряжения от 300 до 400 V, в зависимости от конструкции блока (без PFC 300V с PFC 390V)
  • Ремонт иногда осложняется наличием трудно удаляемого влагозащитного покрытия. В своей конструкции ИБП имеет мощные выводы силового трансформатора. Для его выпаивания требуется паяльник с большей мощностью. При ремонте необходимо соблюдать осторожность, чтобы не повредить токопроводящие дорожки
  • ИБП для проверки, после выполненного ремонта, обязательно включается под нагрузку. С отключенной нагрузкой могут выйти из строя силовые ключи
  • Для того чтобы научиться ремонту импульсных блоков питания для майнеров, приглашаем вас на соответствующий курс в Bgacenter

Инструкция по ремонту

Категория

Схемы для компьютеров

материалы в категории

Инструкция по ремонту источников бесперебойного питания производства APC на русском языке. Два файла в формате PDF

Архив с файлами находится во вложении

У нас на сайте все бесплатно, в свободном доступе и проверено антивирусом!

Вложения к странице

Файл Описание Размер файла:
Скачать этот файл (APC.rar)APC.rar   1955 Кб

Источник бесперебойного питания довольно сложное устройство, которое условно можно разделить на два блока – это преобразователь 12В в сетевое 220В, и зарядное устройство выполняющее обратную функцию: 220В на 12В для подзарядки аккумулятора. В большинстве случаев ремонт бесперебойника очень проблемный и дорогостоящий. Но пробовать всё-же стоит – конечно всегда есть шанс на халяву в виде сгоревшего предохранителя:) 

бесперебойник APC500

Передняя панель АРС500

Розетки и гнёзда АРС-500

   У знакомого на фирме выкинули нерабочий бесперебойник модели APC 500. Но прежде чем пустить его на запчасти, решил попробовать его оживить. И как оказалось не зря. Прежде всего меряем напряжение на аккумуляторной гелевой батарее. Для функционирования бесперебойника но должно быть в пределах 10-14В. Вольтаж в норме, так что проблема с аккумулятором отпадает.

аккумулятор питания бесперебойника APC500

проверка напряжения батареи бесперебойника

   Теперь осмотрим саму плату и померяем питание в ключевых точках схемы. Родной принципиальной схемы бесперебойника APC500 не нашёл, но вот кое что похожее. Для лучшей чёткости скачайте полноценную схему здесь. Проверяем мощные олевые транзисторы – норма. Питание на электронную управляющую часть источника бесперебойного питания поступает с небольшого сетевого трансформатора на 15В. Меряем это напряжение до диодного моста, после, и после стабилизатора 9В. 

транзисторы бесперебойника APC 500

   А вот и первая ласточка. Напряжение 16В после фильтра входит в микросхему – стабилизатор, а на выходе всего пару вольт. Заменяем её на аналогичную по вольтажу модель и воссстанавливаем питание схемы блока управления. 

блок управления упс

микросхема питания платы бесперебойника APC 500

   Бесперебойник начал трещать и жужжать, но на выходе 220В по прежнему не наблюдается. Продолжаем внимательный осмотр печатной платы.

Общий вид печтоной платы АРС500

печатная плата бесперебойника модели APC 500

   Ещё одна проблема – одна из тонких дорожек перегорела и пришлось заменить её тонкой проволочкой. Вот теперь устройство бесперебойного питания APC500 заработало без проблем.

ремонт сгоревшей дорожки в упс арс500

   Испытывая в реальных условиях, пришёл к выводу, что встроенная пищалка сигнализатор отсутствия сети орёт как дурная, и не мешало бы её немного утихомирить. Полностью выключать нельзя – так как будет не слышно состояния аккумулятора в аварийном режиме (определяется по частоте сигналов), а вот сделать тише можно и нужно.

уменьшение громкости пищалки в ИБП

   Это достигается включением резистора на 500-800 Ом последовательно со звукоизлучателем. И напоследок несколько советов владельцам бесперебойников. Если он иногда отключает нагрузку, возможно проблема в блоке питания компьютера с “подсохшими” конденсаторами. Подключите UPS ко входу заведомо исправного компа и посмотрите – прекратятся ли срабатывания. 

блок управления бесперебойником APC500

   Бесперебойник иногда неверно определяет ёмкость свинцовых батарей показывая статус ОК, но стоит только ему переключится на них, как они внезапно садятся и нагрузка “выбивается”. Убедитесь, что клеммы заходят плотно, а не болтаются. Не отключайте его надолго от сети, лишая возможности держать аккумуляторы на постоянной подзарядке. Не допускайте глубоких разрядов батарей, оставляя по меньшей мере 10% емкости, после чего следует отключать бесперебойник до восстановления питающего напряжения. Хотя бы раз в три месяца устраивайте “тренировку”, разряжая батарею до 10% и опять заряжая аккумулятор до полной ёмкости.

   Форум по ремонту бесперебойников

УСТРОЙСТВО ИБП КЛАССА OFF-LINE

Конструкция и ремонт источников бесперебойного питания фирмы АРСВ предыдущей статье мы рассматривали ИБП класса On-line. Сегодня давайте более подробно рассмотрим ИБП класса Off-line на примере ИБП фирмы АРС.

К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в табл.1.

Таблица 1. Основные технические данные ИБп класса Back-UPS

Модель BK250I BK400I BK600I
Номинальное входное напряжение, В 220…240
Номинальная частота сети, Гц 50
Энергия поглощаемых выбросов, Дж 320
Пиковый ток выбросов, А 6500
Пропущенные в нормальном режиме значения выбросов напряжения по тесту IEEE 587 Cat. A 6kVA, % <1
Напряжение переключения, В 166…196
Выходное напряжение при работе от аккумуляторов, В 225 ± 5%
Выходная частота при работе от аккумуляторов, Гц 50 ± 3%
Максимальная мощность, ВА (Вт) 250(170) 400(250) 600(400)
Коэффициент мощности 0,5. ..1,0
Пик-фактор <5
Номинальное время переключения, мс 5
Количество аккумуляторов х напряжение, В 2×6 1×12 2×6
Емкость аккумуляторов, Ач 4 7 10
Время 90-% подзарядки после разрядки до 50%, час 6 7 10
Акустический шум на расстоянии 91 см от устройства, дБ <40
Время работы ИБП на полную мощность, мин >5
Максимальные габариты (В х Ш х Г), мм 168x119x361
Вес, кг 5,4 9,5 11,3

Индекс «I» (International) в названиях моделей ИБп означает, что модели рассчитаны на входное напряжение 230 В, В устройствах установлены герметичные свинцовые не обслуживаемые аккумуляторы со сроком службы 3…5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБп переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.

Структурная схема ИБП Back-UPS 250I, 400I и 600I показана на рис. 1. Сетевое напряжение поступает на входной многоступенчатый фильтр через прерыватель цепи. Прерыватель цепи выполнен в виде автоматического выключателя на задней панели ИБП. В случае значительной перегрузки он отключает устройство от сети, при этом контактный столбик выключателя выталкивается вверх. Чтобы включить ИБП после перегрузки, необходимо вернуть в исходное положение контактный столбик выключателя. Во входном фильтре-ограничителе электромагнитных и радиочастотных помех используются LC-звенья и металлооксидные варисторы. При работе в нормальном режиме контакты 3 и 5 реле RY1 замкнуты, и ИБП передает в нагрузку напряжение электросети, фильтруя высокочастотные помехи. Зарядный ток поступает непрерывно, пока в сети есть напряжение. Если входное напряжение падает ниже установленной величины или вообще исчезает, а также если оно сильно зашумлено, контакты 3 и 4 реле замыкаются, и ИБП переключается на работу от инвертора, который преобразует постоянное напряжение аккумуляторов в переменное. Время переключения составляет около 5 мс, что вполне приемлемо для современных импульсных блоков питания компьютеров. Форма сигнала на нагрузке — прямоугольные импульсы положительной и отрицательной полярности с частотой 50 Гц, длительностью 5 мс, амплитудой 300 В, эффективным напряжением 225 В. На холостом ходу длительность импульсов сокращается, и эффективное выходное напряжение падает до 208 В. В отличие от моделей Smart-UPS, в Back-UPS нет микропроцессора, для управления устройством используются компараторы и логические микросхемы.

Принципиальная схема ИБП Back-UPS 250I, 400I и 600I практически полностью приведена на рис. 2-4. Многозвенный фильтр подавления помех электросети состоит из

варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 2). Трансформатор Т1 (рис. 3) является датчиком входного напряжения.

Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4…D8, IC1, R9…R11, С3 и VR1) и анализа сетевого напряжения.

Если оно пропадает, то схема на элементах IC2…IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1 ) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.

Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.

Во время работы от батареи микросхема IC7 формирует импульсы возбуждения инвертора PUSHPL1 и PUSHPL2. В одном плече инвертора установлены мощные полевые транзисторы Q4…Q6 и Q36, в другом -Q1…Q3 и Q37. Своими коллекторами транзисторы нагружены на выходной трансформатор. На вторичной обмотке выходного трансформатора формируется импульсное напряжение с эффективным значением 225 В и частотой 50 Гц, которое используется для питания подключенного к ИБП оборудования. Длительность импульсов регулируется переменным резистором VR3, а частота — резистором VR4 (рис. 3). Включение и выключение инвертора синхронизируется с напряжением сети схемой на элементах IC3 (выводы 3…6), IC6 (выводы 3…5, 6, 8, 9) и IC5 (выводы 1…3 и 11…13). Схема на элементах SW1 (выводы 1 и 8), IC5 (выводы 4…В и 8…10), IC2 (выводы 8…10), IC3 (выводы 1 и 2), IC10 (выводы 12 и 13), D30, D31, D18, Q9, BZ1 (рис. 4) включает звуковой сигнал, предупреждающий пользователя о проблемах с электропитанием. Во время работы от батареи ИБП каждые 5 с издает одиночный звуковой сигнал, указывающий на необходимость сохранения файлов пользователя, т.к. емкость аккумуляторов ограничена. При работе от батареи ИБП осуществляет контроль за ее емкостью и за определенное время до ее разряда подает непрерывный звуковой сигнал. Если выводы 4 и 5 переключателя SW1 разомкнуты, то это время составляет 2 минуты, если замкнуты — 5 минут. Для отключения звукового сигнала надо замкнуть выводы 1 и 8 переключателя SW1.

Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. На рис. 4 этот порт обозначен как J14. Назначение его выводов:

1 — UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.

2 — AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».

3 — СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

4, 9 — DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.

5 — СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

6 — ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.

7, 8 — не подключены.

Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.

Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.

КАЛИБРОВКА И РЕМОНТ ИБП

Установка частоты выходного напряжения

Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.

Установка значения выходного напряжения

Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.

Установка порогового напряжения

Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.

Установка напряжения заряда

Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.

Типовые неисправности

Типовые неисправности и методы их устранения приведены в табл. 2, а в табл. 3 — аналоги наиболее часто выходящих из строя компонентов.

Таблица 2. Типовые неисправности ИБП Back-UPS 250I, 400I и 600I

Проявление дефекта Возможная причина Метод отыскания и устранения дефекта
Запах дыма, ИБП не работает Неисправен входной фильтр Проверить исправность компонентов MOV2, MOV5, L1, L2, С38, С40, а также проводники платы, соединяющие их
ИБП не включается. Индикатор не светится Отключен автомат защиты на входе (прерыватель цепи) ИБП Уменьшить нагрузку ИБП, отключив часть аппаратуры, и затем включить автомат защиты, нажав контактный столбик автомата защиты
Неисправны батареи аккумуляторов Заменить аккумуляторы
Неправильно подключены аккумуляторы Проверить правильность подключения аккумуляторных батарей
Неисправен инвертор Проверить исправность инвертора. Для этого отключить ИБП от сети переменного тока, отсоединить аккумуляторы и разрядить емкость С3 резистором 100 Ом, прозвонить омметром каналы «сток-исток» мощных полевых транзисторов Q1…Q6, Q37, Q36. Если сопротивление составляет несколько Ом или меньше, то транзисторы заменить. Проверить резисторы в затворах R1 …R3, R6…R8, R147, R148. Проверить исправность транзисторов Q30, Q31 и диодов D36…D38 и D41. Проверить предохранители F1 и F2
Заменить микросхему IC2
При включении ИБП отключает нагрузку Неисправен трансформатор Т1 Проверить исправность обмоток трансформатора Т1. Проверить дорожки на плате, соединяющие обмотки Т1. Проверить предохранитель F3
ИБП работает от аккумуляторов несмотря на то, что есть напряжение в сети Напряжение в электросети очень низкое или искажено Проверить входное напряжение с помощью индикатора или измерительного прибора. Если это допустимо для нагрузки, уменьшить чувствительность ИБП, т.е. изменить границу срабатывания при помощи переключателей, расположенных на задней стенке устройства
ИБП включается, но напряжение в нагрузку не поступает Неисправно реле RY1 Проверить исправность реле RY1 и транзистора Q10 (BUZ71). Проверить исправность IC4 и IC3 и напряжение питания на их выводах
Проверить дорожки на плате, соединяющие контакты реле
ИБП жужжит и/или отключает нагрузку, не обеспечивая ожидаемого времени резервного электропитания Неисправен инвертор или один из его элементов См. подпункт «Неисправен инвертор»
ИБП не обеспечивает ожидаемого времени резервного электропитания Аккумуляторные батареи разряжены или потеряли емкость Зарядите аккумуляторные батареи. Они требуют перезарядки после продолжительных отключений сетевого питания. Кроме того, батареи быстро стареют при частом использовании или при эксплуатации в условиях высокой температуры. Если приближается конец срока службы батарей, то целесообразно их заменить, даже если еще не подается тревожный звуковой сигнал замены аккумуляторных батарей. Емкость заряженной батареи проверить автомобильной лампой дальнего света 12 В, 150 Вт
ИБП перегружен Уменьшить количество потребителей на выходе ИБП
После замены аккумуляторов ИБП не включается Неправильное подключение аккумуляторных батарей при их замене Проверьте правильность подключения аккумуляторных батарей
При включении ИБП издает громкий тональный сигнал, иногда с понижающимся тоном Неисправны или сильно разряжены аккумуляторные батареи Зарядить аккумуляторные батареи в течение не менее четырех часов. Если после перезарядки проблема не исчезнет, следует заменить аккумуляторные батареи
Аккумуляторные батареи не заряжаются Неисправен диод D8 Проверить исправность D8. Его обратный ток не должен превышать 10 мкА
Напряжение заряда ниже необходимого уровня Откалибровать напряжение заряда аккумулятора

Таблица 3. Аналоги для замены неисправных компонентов

Схемное обозначениеНеисправный компонентВозможная заменаIC1LM317TLM117H, LM117KIC2CD4001К561ЛЕ5IC3, IC1074С14Составляется из двух микросхем К561ТЛ1, выводы которых соединить согласно цоколевке на микросхемуIC4LM339К1401СА1IC5CD4011К561ЛА7IC6CD4066К561КТ3D4…D8, D47, D25…D281N40051N4006, 1N4007, BY126, BY127, BY133, BY134, 1N5618… 1N5622, 1N4937Q10BUZ71BUZ10, 2SK673, 2SK971, BUK442…BUK450, BUK543…BUK550Q22IRF743IRF742, MTP10N35, MTP10N40, 2SK554, 2SK555Q8, Q21, Q35, Q31, Q12, Q9, Q27, Q28, Q32, Q33PN22222N2222, BS540, BS541, BSW61…BSW 64, 2N4014Q11, Q29, Q25, Q26, Q24PN29072N2907, 2N4026…2N4029Q1…Q6, Q36, Q37IRFZ42BUZ11, BUZ12, PRFZ42

Геннадий Яблонин

Источник: Журнал «Ремонт электронной техники»

ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

П О П У Л Я Р Н О Е:

  • Ремонт модуля S20609 в инверторных сварках
  • Ремонт модуля S20609 в инверторных сваркахВ некоторых моделях сварочных инверторов, например Helper Prestige, ProfHelper, BestWeld и др., принадлежащих к условному семейству TECNICA устанавливают залитый эпоксидным компаундом субмодуль блока управления S20609.

    О его ремонте и пойдёт речь в статье, ниже…

    Подробнее…

  • Как отремонтировать компьютерный БП?
  • Как отремонтировать компьютерный БП?Рассмотрев структурную схему блока питания типа AT, её можно разделить на несколько основных частей:

    • Высоковольтная (первичная) цепь;
    • Схема ШИМ управления;
    • Вторичная цепь (выходная или низковольтная) цепь.

    Если рассмотреть структурную схему блока питания типа ATХ, то тут добавляется ещё один узел — это преобразователь для напряжения +5VSB (дежурка).

    Подробнее…

  • Стабилизатор на полевом транзисторе.
  • Микромощный стабилизатор на 2N3821

    Подробнее…

Популярность: 33 321 просм.

Источники бесперебойного питания (ИБП) достаточно давно заняли место необходимого компонента в современных компьютерных системах и совокупностях других приборов, используемых как на предприятиях, так и в домашних условиях. Многие потребители знакомы с особенностями работы и разновидностями ИБП. Для них обычный источник бесперебойного питания для компьютера или, к примеру, специализированные бесперебойники для котлов не являются чем-то новым и незнакомым. Особенно на территории нашей страны, где электросети, что уж говорить, не характеризуются стабильностью выдаваемых конечным потребителям показателей. Да и подача электроэнергии, ни для кого не секрет, может быть неожиданно прекращена, пусть и на короткое время, но в любой момент.

Такой полезный и нужный ИБП

Прежде чем переходить к рассмотрению возможностей ремонта ИБП своими руками, а именно об этом пойдет речь ниже, следует еще раз отметить важность этих устройств. Бесперебойники являются неким барьером между устройствами — потребителями электроэнергии и теми неприятностями, которые может принести нестабильность подаваемого в аппаратуру электрического питания. Разработчики постоянно совершенствуют свои продукты и делают их более универсальными.

устройство ибп

Таким образом, устройство ИБП позволяет организовать в большинстве случаев довольно надежную защиту не только ценной информации пользователя в случае с ПК при неожиданном выключении света, но и аппаратным компонентам других устройств, которые чувствительны к перепадам напряжения или его исчезновению. Но даже прибор, призванный защищать другие устройства от поломок, сам иногда может выйти из строя. Рассмотрим основные компоненты, из которых состоит бесперебойник, а также относительно легко устранимые неисправности ИБП.

Устройство ИБП

По своей сути источники бесперебойного питания являются довольно сложными электронными устройствами, состоящими из множества компонентов. Если рассмотреть схему ИБП, причем практически любого, можно обнаружить, что устройство состоит из компонентов, представленных:

  • преобразователями;
  • переключателями;
  • устройствами хранения электрической энергии (в большинстве случаев — аккумуляторная батарея).

неисправности ибп

Почему происходят поломки

Известно, что чем сложнее система, тем больше вероятность того, что она выйдет из строя из-за поломки одного или нескольких отдельных компонентов. В общем случае сложность устройства ИБП обусловлена довольно широким перечнем функций, которые прибор должен выполнять. Сюда относится не только возможность подачи энергии в электрические аппараты в момент пропажи напряжения в сети, но и стабилизирующие, защитные функции. Есть устройства, к которым предъявляются еще более широкие требования. К примеру, бесперебойники для котлов должны, помимо вышеперечисленного, иметь на своем выходе правильную синусоиду. Такая сложность системы обусловливает возможность проявления некоторых неисправностей, хотя такое происходит нечасто. Что делать в этом случае? Как осуществить ремонт ИБП своими руками?

Меры предосторожности

Прежде чем переходить к манипуляциям с аппаратом, следует учитывать, что ИБП – это сложное электронное устройство и при проведении ремонтных работ нужно соблюдать меры предосторожности. Все операции с бесперебойником можно осуществлять, только убедившись, что устройство обесточено. Никакие советы и секреты ремонта ИБП, услышанные от знакомых или найденные в интернете, не спасут от поражения электрическим током в случае необдуманных действий и неаккуратного обращения с компонентами, находящимися под напряжением!

ремонт ибп своими руками

С чего начать?

Конечно же, ИБП, как и любой другой электронный прибор, требует при своей эксплуатации выполнения некоторых элементарных правил. Очень часто причиной кажущейся пользователю неисправности являются неправильно подключенные провода, ослабление или окисление с течением времени клемм их подключения и т. п. Прежде чем задумываться о проведении серьезного ремонта прибора, необходимо внимательно осмотреть соединение проводов, проверить их работоспособность, отсутствие переломов и разрывов кабелей, питающих ИБП, наконец, убедиться в наличии электропитания в розетке.

Поддержка работоспособности

В большинстве случаев рассматриваемое устройство служит своему владельцу долгие годы и без особых проблем. При этом для достижения такого положения вещей требуется регулярное обслуживание ИБП, которое заключается в замене аккумуляторной батареи (примерно раз в два года) и общем контроле исправности электронных компонентов. Если для контроля свойств конденсаторов, резисторов и других электронных элементов понадобятся довольно глубокие знания в электронике и схемотехнике либо поход в сервисный центр, то заменить аккумулятор ИБП, вышедший из строя или утративший свои свойства со временем, может практически каждый. Такой ремонт ИБП своими руками приходится осуществлять практически каждому владельцу устройства хотя бы единожды за жизненный цикл бесперебойника.

бесперебойники для котлов

Предохранитель

Если бесперебойник не включается после перепада напряжения или в результате короткого замыкания в питающей сети, вполне вероятно, что для восстановления работоспособности устройства не потребуется даже его разборка. Первое, что нужно сделать, осуществляя ремонт ИБП своими руками, – это осуществить проверку целостности плавкого предохранителя и его замена в случае необходимости. Поскольку данный компонент выходит из строя достаточно часто, производители ИБП конструируют свои устройства таким образом, чтобы пользователь мог осуществить процедуру самостоятельно. Сами запасные предохранители часто входят в комплект поставки бесперебойника. Если же их нет, аналогичный извлеченному из устройства защитный элемент можно приобрести в любом магазине, где продаются радиодетали. Для замены предохранителя нужно найти на корпусе специальный содержащий его лоток и извлечь/выкрутить — в зависимости от конструкции — содержимое. После замены установить лоток на свое место. Более подробно процедура описана в инструкции к ИБП, но в целом любой домашний мастер разберется и без нее.

секреты ремонта ибп

Замена батареи

Для замены аккумуляторной батареи понадобится совсем немного времени и единственный инструмент – крестовая отвертка. Изначально требуется выкрутить несколько винтов, скрепляющих части корпуса и расположенных снизу ИБП, в специальных отверстиях. Это позволит снять верхнюю крышку и получить доступ к батарее. Аккумулятор в большинстве случаев не закреплен каким-то особым способом внутри корпуса и извлекается достаточно легко. Нужно лишь отсоединить два провода, которые подключаются к батарее с помощью клемм. После извлечения источника сохранения энергии из корпуса ИБП необходимо определить его маркировку и приобрести аналогичную батарею в специализированном магазине. Сборка ИБП производится в обратном порядке:

  1. Установка батареи.
  2. Подключение проводов, соблюдая полярность.
  3. Установка и соединение между собой частей корпуса устройства.

обслуживание ибп

Сложный ремонт

Если вышеописанные советы выполнены, то есть ИБП подключен правильно, предохранитель в устройстве цел и аккумуляторная батарея исправна, а бесперебойник все равно не работает должным образом, вероятно, самым правильным решением будет обращение для ремонта аппарата в сервисный центр. Дело в том, что схема ИБП довольно сложна для обычного пользователя, диагностика и замена в случае необходимости отдельных электронных компонентов без специальных инструментов и навыков мастера в домашних условиях часто просто неосуществимы. Таким образом, пытаясь починить нерабочий прибор без определенных знаний и умений, а также без наличия соответствующего оборудования домашний мастер может лишь усугубить ситуацию.

схема ибп

В общем случае, решив починить неисправный ИБП самостоятельно, нужно в первую очередь взвесить свои силы и возможности. От обычного пользователя чаще всего требуется проведение простейших манипуляций, которые правильнее было бы отнести к обслуживанию устройства, а не его ремонту. Устранение сложных поломок лучше доверить профессионалам.

Источники бесперебойного питания (ИБП) или иначе UPS (Uninterruptible Power Supply) – не только весьма полезные, но зачастую и необходимые приборы. Они помогут продержаться при кратковременном отключении электричества и, главное, позволят сохранить наработанные данные и корректно выключить компьютер. Но все когда-то ломается. В этой статье мы рассмотрим ремонт «бесперебойника» своими руками. Серьезную неисправность нам, конечно, не устранить, но с относительно простыми можно попробовать справиться самостоятельно.

Схемы ИБП переменного тока

Для бытовых нужд используют устройства для бесперебойного питания, подключаемые к однофазной сети 220 В, которые могут некоторое время при отсутствии электроэнергии питать потребителей, требующих такого же напряжения.

Существуют также ИБП, которые подключены на вход к трехфазной сети, а на выход дают или 380 В или 220 В. Однако они дороги, их используют при необходимости получать автономную мощность от 10 кВ·А, что для бытовых нужд не требуется.

Бытовые ИБП переменного тока по схеме функционирования делят на следующие типы:

  • резервные (оффлайн);
  • интерактивные (линейно-интерактивные);
  • двойного преобразования (онлайн).

Они различаются качеством выдаваемого напряжения и ценой. Наиболее дешевые – резервные, а самые дорогие – двойного преобразования.

Для преобразования переменного тока в постоянный в зарядном устройстве используют выпрямитель. А обратная трансформация происходит при помощи инвертора.

В бесперебойниках для переключения цепи с сети на аккумулятор, как правило, устанавливают обыкновенные электромеханические реле. Если эта деталь качественная, то ее ресурса хватает на все время функционирования ИБП. Но чаще всего, при поломке блока проблема кроется именно в этом элементе конструкции.

Стабилизация напряжения присутствует также во многих бытовых устройствах, поэтому если отклонения незначительны, то и нет смысла приобретать более дорогую линейно-интерактивную модель.

Наличие трансформатора часто вынуждает производителя использовать принудительное охлаждение, поэтому такие ИБП комплектуют кулерами. Они издают шум, по интенсивности сравнимый с работой компьютерного системного блока.

Самые сложные и дорогие приборы двойного преобразования имеют к тому же наименьший КПД. Электроэнергия уходит в тепло, которое излучает устройство. Поэтому их использование необходимо обосновать.

Наиболее значимый плюс такого вида бесперебойников заключается в мгновенной реакции на отключение электричества. Но для большинства бытовой техники это не так важно. Те же компьютеры обычно комплектуют ИБП резервного или интерактивного типа.

С чего начать

Перед тем как начать подключение бесперебойника, необходимо проверить аккумуляторную батарею. По правилам перевозки источники бесперебойного питания перевозятся с отключённым аккумулятором, что исключает возможность самопроизвольного включения. Чтобы подключить батарею, необходимо открыть отсек, в котором хранится акб. Там вы сможете увидеть два разъёма, которые необходимо соединить друг с другом.

Читать также: Параметры лазерной резки фанеры

Как подключить бесперебойник к компьютеру схема

Начинать подсоединение бесперебойника всегда стоит с подключения нагрузки. Как правило, выходные разъёмы расположены на задней панели ИБП. Количество выходных разъёмов и их тип могут быть разными. По этой причине вам необходимо иметь в соответствующем количестве необходимые кабели для подключения .

Что можно подключить к бесперебойнику? К ИБП можно подключать любую технику за исключением нагрузки с высокой мощностью. К таковой относятся многофункциональные устройства, электрочайники, микроволновки, пылесосы, лазерные принтеры и тому подобная техника. Если вы используете мфу или принтер, то схема подключения ИБП к сети должна включать сетевой фильтр, к которому подключается ИБП и мощные потребители нагрузки.

Наиболее важные параметры

Сейчас на рынке много предложений по продаже бытовых источников бесперебойного питания. Чтобы правильно определить их предназначение и не ошибиться с выбором, нужно понимать на какие параметры следует обратить внимание в первую очередь.

Основные технические характеристики

Выходная мощность прибора определяет максимально допустимое значение, которое блок сможет гарантированно выдать потребителю. Ее измеряют в вольт-амперах (В·А). Для удобства пользователей часто приводят это значение и в ваттах.

Для измерения нагрузки приборов можно или воспользоваться амперметром или высчитать ее, применив показания установленного в квартире счетчика.

При определении реальной мощности компьютера не следует руководствоваться номиналом блока питания, так как его всегда покупают с запасом.

Если нет амперметра, то нужно выполнить следующие действия:

  1. Отключить все цепи в щитке, кроме той, от которой запитан компьютер.
  2. Отключить все приборы в этой цепи.
  3. Включить компьютер и запустить на нем типичную для него программу (например, ролик с YouTube).
  4. Дождаться, когда на счетчике произойдет изменение значения десятой доли киловатта.
  5. Засечь время до следующего изменения.

Среднюю мощность потребления (P, ватт) за этот период (t, минут) можно высчитать по формуле:

P = 100 * (60 / t)

Следующая важная характеристика – период автономной работы. Этот показатель зависит от нагрузки, которую в этот момент испытывает ИБП. На максимально допустимой мощности аккумуляторы бытового устройства работают 1-3 минуты. А на половинной – гораздо дольше (до 10 минут).

Отсюда следует два вывода:

  • при отключении электроэнергии, необходимо максимально снизить потребляемую приборами нагрузку;
  • желательно приобретать ИБП с мощностью, которая превышает расчетную хотя бы на 30%.

Диапазон входного напряжения показывает минимально и максимально допустимый вольтаж сети, при котором не произойдет переключение питания на аккумуляторы. Как правило, все ИБП выдерживают интервал в 180-260 В.

У некоторых производителей можно встретить очень хорошие (рекламные) показатели, например, нижнее значение – 110 В. Тут нужно убедиться, что эти цифры взяты именно для максимальной нагрузки, а не для половинной.

Еще один важный технический показатель – уровень шума. ИБП, выполненные по линейно-интерактивной или онлайн технологии выделяют много тепла, поэтому производители устанавливают на них вентиляторы. Если кулеры дешевые, то со временем они будут издавать гул, что для жилого помещения нежелательно.

Интерфейс и выполнение настройки

Внешний вид блоков может быть самым разнообразным. Обычно они имеют классическую прямоугольную форму, где на лицевой стороне находятся индикаторы или дисплей, а на тыльной – силовые разъемы. Их количество не так важно, так как на выходе можно подключить удлинитель с тройником. Это никак не будет противоречить концепции ИБП.

Модель может иметь жк-дисплей, на котором будет отображена ситуация со снабжением подключенных приборов: наличие питания, количество потребителей, заряд аккумулятора и т.д.

Чтобы узнать параметры электроснабжения, состояние аккумуляторов ИБП и как он работает, можно подключить его к компьютеру. Для многих моделей реализована эта функция и разработано программное обеспечение.

Существует три основных вида интерфейса:

  • USB. Наиболее распространенное соединение компьютера и ИБП.
  • RS-232 (COM-порт). Редко присутствует в бытовых моделях.
  • Ethernet 10/100. Его применяют для удаленного управления бесперебойником.

Программное обеспечение для получения характеристик с ИБП и его управления разработано не только под различные версии Windows. Так, например, у известного производителя Powercom есть Android-версия ПО, позволяющая удаленно следить за состоянием питания и при необходимости корректировать работу бесперебойника.

Размещают бесперебойники в непосредственной близости от защищаемых потребителей электроэнергии. Обычно их ставят на пол или на полки. Некоторые модели оснащены крепежами, позволяющими монтировать их на стены.

Пошаговая инструкция по ремонту

Со схемами мы разобрались, можно начать ремонт ИБП своими руками. Как было замечено ранее, схема любого бесперебойника довольно сложна, но наиболее распространенные типовые неисправности можно устранить своими силами, имея самый простой инструмент – тестер, паяльник, отвертки.

Как разобрать бесперебойник

В зависимости от производителя и модели компьютерного источника бесперебойного питания разобрать их можно одним из двух способов.

Способ 1

На задней стенке находим 4 винта и отворачиваем их. Аккуратно тянем заднюю стенку на себя и отодвигаем. Снять полностью ее не получится – она соединена с блоком проводами.

Над передней стенкой находим паз и при помощи отвертки отжимаем замок. Снимаем переднюю панель. Она тоже на проводах!

Под передней стенкой находим еще три винта. Отворачиваем их. После этого боковая стенка легко снимется.

Способ 2

Здесь все несколько проще. Переворачиваем ИБП вверх «ногами». Находим 4 винта, отмеченные на фото ниже красными стрелками. Отверткой с длинным стержнем отворачиваем их. Беремся за заднюю часть крыши и слегка приподнимаем.

Ставим ИБП передней панелью к себе. Беремся за задний край верхней крышки. Тянем его на себя и вверх одновременно. Передняя панель держится на замках (на фото выше указаны зелеными стрелками), именно они должны выйти из зацепления. После этого верхняя крышка легко снимется.

Качество выдаваемого тока

Бесперебойные источники питания должны выдавать ток надлежащего качества. При работе от батарей за это отвечает инвертор, а в случае питания от сети, проблемные моменты должны сглаживать фильтры и стабилизатор. Возникающие в электрической цепи помехи имеют разный генезис и последствия для электроники. Поэтому в этом вопросе тоже нужно тщательно разобраться.

Сетевые помехи и защита

Все современные ИБП оснащены защитой от проблем, связанных со стороны обслуживаемых приборов. Если суммарная нагрузка будет превышать максимально допустимую или произойдет короткое замыкание, то бесперебойник сразу отключит питание.

Помехи в сети можно условно разделить на частотные и импульсные. Первые не так опасны, особенно для блоков питания компьютеров или телевизоров, которые преобразуют переменный ток в постоянный. Вторые могут вызвать проблему у любой электроники.

Поэтому большинство ИБП оснащены защитой от импульсов и гармоник с помощью варисторов и высокочастотных фильтров.

Проблема появления высоковольтных импульсов характерна не только для силовых кабелей, но и для сетей передачи данных – компьютерных или телефонных. Они могут возникнуть по причине воздействия атмосферного электричества, пробоев рядом расположенной проводки, возникающих электрических наводок и других причин.

Многие производители выпускают модели с возможностью защиты локальной сети. Для этого у ИБП есть два разъема RJ-45 – один на вход и один на выход. Сигнал проходит через фильтр, который подавляет всплески напряжения. Для телефонных линий система такая же, только разъемы имеют формат RJ-11.

Низкое и высокое напряжение

Регулировка вольтажа происходит с помощью автоматического регулятора напряжения (AVR), основным элементом которого служит автотрансформатор. Принцип его функционирования опирается на изменении количества витков одной из обмоток, в результате чего происходит изменение напряжения в сторону увеличения или уменьшения его значения.

Наличие AVR в ИБП позволяет не включать каждый раз автономный режим при незначительном отклонении напряжения от нормативных показателей. Это значительно увеличивает срок службы аккумуляторов.

Согласно ГОСТ 29322-2014 допустимо 10-и процентное отклонение напряжения от эталонного значения на время не более чем 1 час. Все современные ИБП с регуляторами справляются с такими колебаниями.

Чистота выходящего сигнала

От модели инвертора, которая установлена в бесперебойник, зависит тип выходного сигнала. В идеале, кривой напряжения переменного тока должна быть синусоида. Но после преобразования через инвертор она принимает ступенчатый вид.

Для оборудования, которое содержит асинхронные электродвигатели (холодильник, кондиционер), трансформаторные блоки питания (качественная аудиотехника), блоки питания APFC (сервера и мощные вычислительные компьютеры) нужна чистая или хорошо аппроксимированная синусоида.

Ни один инвертор, а значит, и ИБП не выдает чистую синусоиду, чтобы не писали в рекламных брошюрах производители оборудования. Приближение выходящего сигнала к синусоиде оценивают через коэффициент нелинейных искажений (THD).

Выходящий от блока сигнал можно считать синусоидальным при THD<5%. У некоторых моделей, например IMV NetPro 2000, этот показатель равен всего 2%.

Особенности подключения оборудования

Рассмотрим последовательность действий и правильную схему подключения источника бесперебойного питания на примере системы автономного электроснабжения газового котла. Котельное оборудование характеризуется повышенной чувствительностью к электропитанию, поэтому требует особо внимательного подхода при подсоединении ИБП.

  1. Подключаем бесперебойник к аккумуляторам. При подсоединении батареи необходимо, чтобы устройство было в выключенном состоянии. Коммутацию рекомендуется осуществлять проводами двух цветов — красного для клеммы «+» и черного для «-». Не все модели ИБП оснащены защитой от переполюсовки, поэтому крайне важно соблюдать правильную полярность. Если батарей несколько, то предварительно следует соединить их между собой. Для этого используются стандартные перемычки или медный провод.
  2. Подключаем сетевой кабель к ИБП и включаем устройство. Проверяем значение напряжения на дисплее. Если все в порядке, отключаем бесперебойник и подключаем к нему котел.
  3. Снова подаем напряжение и проверяем показания на экране.
  4. Если мощность источника бесперебойного питания слишком большая для подключения его в обычную розетку, придется прокладывать отдельную линию от распределительного щита и устанавливать отдельные автоматические выключатели.
  5. Имитируем отключение электроэнергии. Для этого выключаем фазный автомат в электрощитке.
  6. Проверяем показания на дисплее бесперебойника, тестируем работу электророзжига котла.

Правила использования ИБП

Приобретая бесперебойник для организации резервного питания, необходимо понимать, совместно с какими приборами его можно использовать. Иногда обойтись только ИБП невозможно и тогда нужно принимать дополнительные меры по обеспечению дома электричеством.

Подключение бытовых приборов

Компьютеры, модемы, роутеры, видео- и аудиоаппаратура – типичные домашние или офисные приборы, к которым подключают бесперебойники. Если эта техника содержит обыкновенные импульсные блоки питания, то достаточно будет приобрести относительно дешевые модели, которые не выдают чистую синусоиду.

Блок питания на полу

Для освещения также не нужно приобретать дорогие изделия. Здесь главное правильно рассчитать максимальную мощность и время автономной работы.

При частых отключениях актуальна проблема незапланированной разморозки холодильников и порчи продуктов питания. При защите такого оборудования с асинхронными двигателями понадобятся ИБП более сложного устройства, так как потребуется “чистый” синусоидальный сигнал.

Кроме того, необходимо учесть наличие стартовых токов, возникающих при пуске двигателя. Упрощенно для холодильного оборудования их величину можно определить, умножив значение мощности на 5.

Если, например, на кухне есть холодильник с полной мощностью 300 Вт (при запуске – 1500 Вт) и морозильная камера на 200 Вт (при запуске – 1000 Вт), то нужен блок питания с чистой синусоидой и максимальной мощностью не менее 1700 Вт. Это значение получено на случай, когда будет работать морозильник, а в это время произойдет включение холодильника. Одновременный пуск обоих моторов маловероятен, да и такой ИБП выдержит односекундный всплеск в 2,7 кВт.

Блок онлайн типа с максимальной мощностью 2000 Вт сможет проработать около получаса при суммарном потреблении 500 Вт. Так как режим охлаждения занимает около 5 минут, то бесперебойника гарантированно хватит на 6 запусков обоих устройств.

Бесперебойники также активно используют для работы газовых отопительных котлов. Учитывая стоимость подключаемого оборудования, экономить на качестве ИБП в этом случае не следует.

Резервное и дополнительное электропитание

Для многих бытовых приборов невозможно подобрать недорогой ИБП, так как будет необходима значительная максимальная мощность при длительном периоде автономной работы. Стиральные машины, электрические духовки, системы распределенного кондиционирования потребляют много электричества.

Можно, конечно, обойтись без этих устройств на время отключения электроэнергии. Это целесообразно в том случае, если такие перебои происходят редко и на короткое время. Но если все же будет принято решение по обеспечению мощных потребителей автономным питанием, то лучше использовать бензиновый или дизельный генератор. Для их быстрого запуска при отсутствии напряжения используют систему автоматического ввода резерва (АВР).

При наличии дополнительного источника питания, ИБП все же стоит использовать, хотя бы для компьютеров. Мгновенного запуска генератора и восстановления электроснабжения добиться невозможно.

Стабилизация пониженного напряжения

Проблема пониженного напряжения актуальна для объектов, подключенных к старым или маломощным электросетям. Если такая ситуация возникает постоянно, то лучше использовать входной стабилизатор.

Решение проблемы пониженного напряжения

При пониженном напряжении возрастает сила тока, проходящего по внутридомовой сети. Например, пусть общая мощность подключенных к ИБП потребителей будет 1,5 кВт, а подаваемое напряжение равно 190 В.

Тогда по закону Ома:

  • I1 = 1500 / 190 = 7,9 A – сила тока в цепи до ИБП без стабилизатора;
  • I2 = 1500 / 220 = 6,8 A – сила тока в цепи до ИБП со стабилизатором.

Таким образом, внутридомовая сеть без стабилизатора будет испытывать повышенную нагрузку, что могло быть не учтено при выборе сечения проводки.

Поэтому при постоянном пониженном напряжении лучше установить стабилизатор. В этом случае и нагрузка на автотрансформатор ИБП будет меньше, что продлит срок его службы. Кроме того, с учетом выравнивания вольтажа, можно приобретать более дешевые бесперебойники.

Подключение к компьютеру

Как подключить бесперебойник к компьютеру? Чтобы подключить ИБП к сети необходимо воспользоваться питающим кабелем, идущим в комплекте. После подключения начнётся зарядка аккумуляторной батареи. При подключении оборудования необходимо выключить ИБП и компьютер. Подключение бесперебойника к компьютеру обязательно должно производиться после отключения ИБП и всех компонентов в схеме. Затем остаётся подключить компьютер в соответствующее гнездо. Кроме компьютера к ИБП можно подключить и периферию. Если конструкцией предусмотрена возможность линий связи, то их тоже следует подключить сразу.

Стоит помнить, что выходные разъёмы не равноценны, поэтому подключение ИБП к компьютеру стоит производить с учётом этого. Например, у модели Eaton 9130 они разделены на 2 группы. К первой подключается важная нагрузка, которая обеспечивает оборудование питанием при отключении энергии. Ко второй группе подключается некритичная нагрузка, например, устройства вывода звука. Питание нагрузки, относящееся к первой группе, будет в приоритете.

Как подключить бесперебойник к компьютеру схема

ИБП Eaton 9130 вид сзади

Теперь вы знаете как правильно подключить бесперебойник к компьютеру, но есть ещё один нюанс, который необходимо учитывать. Порядок включения несколько изменится, когда в схеме подключения компьютера к сети появится ИБП. Всякий раз при включении компьютера сначала будет необходимо включить ИБП, в противном случае акб быстро износятся.

Как подключить монитор к бесперебойнику? Эта процедура ничем не отличается от подключения компьютера. Если ваш монитор имеет отдельный блок питания, то его необходимо подсоединить к ИБП с помощью подходящего кабеля. Установить и правильно подключить бесперебойник подобного типа очень просто.Подключение ИБП к любой другой офисной технике осуществляется по аналогичной схеме.

Бесперебойное питания потребителей постоянного тока

Для некоторых приборов нужно обеспечить бесперебойное питание постоянным током 12, 24 или 48 В. ИБП такого плана тоже есть в продаже. В их маркировке присутствует аббревиатура “DC”. Блоки с подачей напряжения 60, 110 или 220 В тоже существуют, но их применяют в промышленности или энергетике.

Отличие бесперебойников постоянного тока во внутреннем устройстве от классических моделей заключается в отсутствии инвертора. Аккумуляторы подключают непосредственно к выходу через контактор с токоограничительным измерительным шунтом для предотвращения недопустимо глубокого разряда батарей.

Иногда на выходе может стоять стабилизирующий конвертор, если запитанные от ИБП приборы чувствительны к небольшим колебаниям напряжения.

Такие резервные источники питания используют для защиты следующего бытового оборудования, работающего от постоянного тока:

  • систем видеонаблюдения и охраны;
  • всевозможных датчиков (протечки, дыма, огня, движения и др.);
  • систем освещения;
  • телекоммуникационных приборов;
  • систем связи;
  • компонентов системы управления “умный дом”.

Многие ИБП постоянного тока имеют опцию подключения внешних аккумуляторов. В этом случае автономное функционирование обслуживаемых ими приборов может быть очень длительным.

Подключаем UPS мощностью 3 кВА

В качестве ИБП на 3 кВА возьмем On-line UPS (ИБП с двойным преобразованием) для 19″ стойки – ИБП Eaton 9130-R мощностью 3000 ВА с одним дополнительным батарейным блоком. Он сможет питать вполне серьезную стойку с несколькими серверами, даже если сеть пропадет на полчаса. Буква «R» в названии ИБП Eaton 9130-R – от английского «Rackmount» (для монтажа в стойку).

П еред подключением стоечного UPS придется провести несложные монтажные работы. Вынимаем из коробок UPS и батарейного блока детали раздвижных направляющих опор для монтажа в стойку, собираем их, «наживляя» винты, так чтобы вышли две таких конструкции:

Читать также: Как правильно заряжать аккумулятор для автомобиля

Р егулируем длину направляющих в соответствии с глубиной стойки и закрепляем направляющие сзади и спереди в нижней части стойки (в самом низу – направляющие для аккумуляторной батареи, а непосредственно над ними – направляющие для UPS). После этого можно окончательно затянуть винты скрепляющие передние и задние части направляющих.

Как подключить бесперебойник к компьютеру схема

К каждому боку ИБП Eaton 9130-R и внешнего блока аккумуляторной батареи крепим скобу, – они тоже есть в комплекте UPS.

Т еперь аккуратно вдвигаем UPS в стойку и привинчиваем скобы к стойке. То же самое делаем с блоком аккумуляторной батареи.

Как подключить бесперебойник к компьютеру схема

П ри желании, можно закрепить UPS и батарею в стойке еще и сзади – в комплект входят специальные уголки.

Т еперь наш ИБП Eaton 9130-R окончательно готов к подключению.

Как подключить бесперебойник к компьютеру схема

Н а задней панели ИБП Eaton 9130-R видим два незнакомых разъема. Это входной и выходной разъемы, рассчитанные на ток до 16 А. В комплект UPS входят подходящие к этим разъемам кабели. Берегите их. Купить такой кабель очень непросто, да и дорого. Появление 16-амперных разъемов обусловлено большей мощностью UPS. При выходной мощности 3000 ВА, входной ток может достигать почти 16 А (с учетом КПД и зарядки аккумуляторов). Выходным кабелем на 16 А можно подключить мощный файловый сервер, у которого есть соответствующий входной силовой разъем.

Н а задней панели есть специальный винт для подключения защитного заземления. Провод заземления в комплект не входит. Если его планируется использовать, этот провод подключают к общей земле стойки, и это подключение делается в первую очередь.

Н астало время подключить внутреннюю и внешнюю аккумуляторные батареи. Отвернем по два винта, расположенных справа на передних панелях ИБП Eaton 9130-R и батарейного блока, а потом снимем обе передние панели, сдвигая их вправо. Осторожнее с передней панелью UPS – за ней тянется шлейф проводников – не порвите его.

П еред нами две пары разъемов – от ИБП Eaton 9130-R к его внутренней и внешней аккумуляторным батареям. Соединяем соответствующие разъемы в любой последовательности. Перед установкой передних панелей, в верхней части передней панели UPS аккуратно выламываем кусачками намеченное отверстие для проводов.

В верхней части передней панели внешней аккумуляторной батареи аккуратно выламываем еще одно намеченное отверстие. Ставим на место обе передние панели, не забыв закрепить их винтами и переходим к выходу UPS.

У ИБП Eaton 9130-R два выхода. К каждому из них можно подключить свою группу оборудования. Обе группы будут одинаково защищены, но в случае работы UPS от аккумуляторной батареи, ее заряд можно будет распределить между группами не равномерно, а в соответствии с важностью оборудования. Подробнее это рассмотрено в разделе «Настройка UPS (ИБП)», а пока просто подключим силовые кабели серверов к разъемам первой группы.

В ходным кабелем на 16 А подключим UPS к розетке, убедившись предварительно, что она рассчитана на 16 А, а не на 10 А. Теперь наш ИБП Eaton 9130-R готов к работе. Нажимаем и удерживаем кнопку включения, и UPS включается.

У ра! Серверы защищены от неполадок в электрической сети – они снабжаются стабилизированным напряжением идеальной формы, что бы ни происходило с напряжением в сети. И мы еще имеем возможность настроить ИБП Eaton 9130-R и подключить его к локальной сети для управления и мониторинга.

Выводы и полезное видео по теме

Кратко об основных характеристиках бытовых ИБП:

Разнообразие типов ИБП и их характеристик является следствием различных условий их использования: мощности и вида подключаемых приборов, параметров и типовых проблем конкретной электросети. Бесперебойник обычно не самый дорогой элемент в системе, но от него зависит стабильность ее работы. Поэтому нужно определить условия эксплуатации и тщательно подойти к выбору модели.

Остались вопросы по теме статьи? Или можете дополнить этот материал интересной информацией о ИБП? Пожалуйста, пишите свои комментарии, задавайте вопросы, делитесь опытом в расположенном ниже блоке.

Подключение ИБП к котлу отопления

Как подключить ИБП к котлу? Как известно, котлы отопления и циркуляционные насосы очень чувствительны к питанию. По этой причине в схеме питания котла отопления обязательно должен присутствовать источник бесперебойного питания. Универсальная схема подключения бесперебойного источника питания к котлам ещё не придумана, так как оборудование может сильно отличаться друг от друга.

Некоторые модели котлов требуют помимо правильного подключения фазы и нейтрали, наличия в схеме подключения ИБП так называемой обязательной нейтрали. Сбои в работе у таких моделей возникают при переходе на питание с акб. При этом входная и выходная нейтраль должны быть обязательно разделены.

О том, как подключить бесперебойник к газовому котлу и некоторых тонкостях также может упоминаться в инструкции к самому котлу отопления.

Как подключить бесперебойник к насосу? В целом ситуация с насосами аналогична котлам отопления. И те, и другие относятся к фазозависимому оборудованию, поэтому принципы подключения ИБП аналогичны.

Понравилась статья? Поделить с друзьями:
  • Руководство для христианина
  • Ротокан инструкция по применению для детей 6 лет
  • В моем ноутбуке нет руководства пользователя
  • Овитрель инструкция по применению уколы при эко
  • Почистить барабан стиральной машины лимонной кислотой инструкция как