Руководство по управлению двигателем с распределенным впрыском топлива

Содержание

  1. AutoSoftos.com
  2. AutoSoftos.com Литература по ремонту автомобилей, Програмы для диагностики авто
  3. Всегда свежий софт и автомобильная литература
  4. Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива
  5. Как работает система распределенного впрыска топлива MPI
  6. Основной принцип работы системы MPI
  7. Конструкция системы многоточечного впрыска
  8. Режимы работы MPI
  9. Отличия системы MPI
  10. Преимущества и недостатки многоточечного впрыска
  11. Руководство по управлению двигателем с распределенным впрыском топлива
  12. Нейтрализатор
  13. Электронный блок управления (компьютер)
  14. Память
  15. Запоминающее устройство калибровок
  16. Датчики
  17. Система питания
  18. Система улавливания паров бензина
  19. Система зажигания
  20. Работа системы впрыска
  21. Режимы управления топливоподачей
  22. Режим пуска двигателя
  23. Режим продувки двигателя
  24. Режим открытого цикла (без обратной связи по датчику кислорода)
  25. Режим замкнутого цикла (с обратной связью по датчику кислорода)
  26. Режим ускорения
  27. Мощностное обогащение
  28. Режим торможения
  29. Торможение двигателем
  30. Режим корректировки напряжения аккумуляторной батареи
  31. Режим отключения подачи топлива
  32. Диагностика
  33. Введение
  34. Коды неисправностей систем ф.GM
  35. Коды неисправностей систем на базе контроллеров «Январь-4»
  36. Считывание кодов неисправностей
  37. Очистка кодов неисправностей

AutoSoftos.com

AutoSoftos.com
Литература по ремонту автомобилей, Програмы для диагностики авто

Всегда свежий софт и автомобильная литература

Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива

  • Разместил: klays067;
  • Прочитано: 2 957;
  • Дата: 15-10-2015, 18:58;

Настоящее руководство разработано генеральным департаментом развития АО АВТОВАЗ и предназначено для
инженерно-технических работников предприятий по обслуживанию и ремонту автомобилей, а также может использоваться
как учебное пособие при подготовке специалистов по ремонту автомобилей.В руководстве описывается устройство и ремонт
только элементов электронной системы управления двигателем с распределенным впрыском топлива по состоянию на декабрь 1997 г.

Модель:ВАЗ-2110
Материал: скан книги
Язык: Русский
Качество: отличное
Название: Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива
Год выпуска: 1998
Жанр: Руководство по техническому обслуживанию и ремонту.
Издательство: Ливр
Кол-во страниц: 147

Как работает система распределенного впрыска топлива MPI

Система распределенного (многоточечного) впрыска топлива MPI используется только на бензиновых двигателях и является наиболее популярной в мире. В данной системе каждый цилиндр оснащается индивидуальной форсункой, которая впрыскивает топливо непосредственно перед впускным клапаном. Многоточечный впрыск идеально соответствует высоким экологическим стандартам, а также требованиям, предъявляемым к смесеобразованию в современных двигателях.

Основной принцип работы системы MPI

Обозначение MPI расшифровывается как Multi-point injection, что означает “многоточечный впрыск”. Наиболее часто такая маркировка встречается на европейских автомобилях.

Конструкция системы многоточечного впрыска

Она состоит из следующих элементов:

  • дроссельная заслонка;
  • распределительная магистраль или топливная рампа;
  • электромагнитные форсунки (инжекторы);
  • датчик массового расхода воздуха или датчик давления и температуры воздуха;
  • регулятор давления топлива.

Схема распределенного впрыска

В такой системе питания воздух из атмосферы проходит через воздушный фильтр, датчик массового расхода воздуха и затем через дроссельную заслонку попадает во впускной коллектор. Далее он распределяется по каналам цилиндров.

В свою очередь, топливо подается при помощи насоса через топливный фильтр и рампу к форсункам. Последние расположены вблизи впускных клапанов цилиндров, что снижает потери топлива и вероятность его оседания во впускном коллекторе. Работу форсунок контролирует ЭБУ двигателя. Количество топлива, которое должно поступить через форсунки, блок управления рассчитывает на основе информации о режимах, нагрузке и оборотах двигателя, а также на основе информации о количестве поступившего в систему воздуха, полученной от целого комплекса датчиков (температуры, давления). В соответствии с расчетами, ЭБУ подает импульсные сигналы на электромагнитные форсунки, приводя их в работу.

Помимо управления режимами работы инжекторов, блок управления проводит регулярную диагностику состояния системы впрыска и при обнаружении неисправностей выдает соответствующий сигнал об ошибке на приборной панели (“Check Engine”).

Режимы работы MPI

В зависимости от режима работы форсунок различают несколько видов системы:

  • Одновременный впрыск. В такой системе все инжекторы открываются одновременно, подавая топливо в каждый цилиндр. Такая схема представляет собой усовершенствованный моновпрыск, поскольку ЭБУ управляет процессом открытия и закрытия всех форсунок как открытием одной. С другой стороны, объем подаваемого топлива для каждого отдельного цилиндра может быть разным.
  • Попарный впрыск. Открытие электромагнитных форсунок происходит парами, но при этом одна работает на такте впуска, а вторая в момент выпуска отработавших газов. В настоящее время такая схема применяется только на этапе запуска мотора или в аварийной режиме.
  • Индивидуальный впрыск. Это наиболее часто используемая схема, при которой каждая форсунка срабатывает по отдельности на такте впуска. Для обеспечения их работы в системе предусмотрен датчик фаз газораспределения. Он устанавливается на распределительном валу и определяет время срабатывания каждой форсунки в зависимости от положения вала. Впрыск топлива в каждый цилиндр происходит один раз за один рабочий цикл двигателя. Классическая последовательность работы форсунок: 1-3-4-2.

Отличия системы MPI

Многие путают MPI с распределенным впрыском в целом, куда также входит система непосредственного впрыска GDI (FSI, DISI, TSI), при которой подача топлива осуществляется напрямую в каждый цилиндр. Это важное различие, поскольку Multi-point injection предполагает образование топливовоздушной смеси в каналах впускного коллектора перед впускными клапанами.

Помимо этого, двигатели с многоточечным распределенным впрыском являются атмосферными, без использования наддува. А это означает, что такие двигатели имеют менее жесткие требования к качеству топлива.

Преимущества и недостатки многоточечного впрыска

Главными достоинствами системы распределенного (многоточечного) впрыска является более экономичный расход топлива и соответствие требованиям экологических стандартов в сравнении с моновпрыском или карбюратором. С другой стороны, двигатель MPI менее мощный, нежели моторы с непосредственной подачей топлива в цилиндры двигателя. При этом, в сравнении с системами с непосредственным впрыском, отличается менее затратным обслуживанием.

К недостаткам распределенного впрыска можно отнести сложность изготовления, и, как следствие, высокую стоимость. Это также относится к ремонту электронной системы и инжекторов. Для обслуживания и диагностики необходимо специализированное оборудование и высококвалифицированные специалисты.

Для отечественных условий системы многоточечного распределенного впрыска считаются наиболее оптимальными по соотношению стоимости и удобства обслуживания, а также по уровню получаемой мощности и комфорту эксплуатации.

Руководство по управлению двигателем с распределенным впрыском топлива

Распределенный впрыск ф.GM это целое семейство комплектаций и соответственно блоков управления. Отличия в комплектации не слишком значительны и заключаются в следующем:
1. Блоки управления для 8-ми и 16-ти клапанных двигателей отличаются аппаратно.
2. В комплектацию 16-ти клапанных двигателей включен дополнительный датчик фаз газораспределения и поэтому впрыск для этих двигателей является фазированным (индивидуальное управление каждой форсункой), и соответственно для 8-ми клапанных попарно-параллельный (попарное управление форсунками).
3. Для 16-ти клапанных двигателей имеется комплектация для норм России из которой исключены: датчик кислорода, каталитический нейтрализатор и адсорбер. И включен потенциометр регулировки СО.
В остальном, приводимое ниже описание справедливо для всех систем распределенного впрыска ф.GM устанавливаемых на автомобилях ВАЗ. Поскольку системы на базе блоков управления «Январь-4» создавались как функциональные аналоги системам от GM, то данное описание полностью справделиво и для них, за некоторыми изъятиями:
системы на базе контроллеров «Январь-4» не комплектуются датчиком кислорода, каталитическим нейтрализатором и адсорбером системы улавливания паров бензина(СУПБ) и всегда имеют в своем составе потенциометр регулировки СО. Отличия, в основном, коснулись раздела «Диагностика». Об этом всегда указывается дополнительно.

Нейтрализатор

Токсичными компонентами отработавших газов являются углеводороды (несгоревшее топливо), окись углерода и окись азота. Для преобразования этих компонентов в нетоксичные служит трех-компонентный каталитический нейтрализатор, установленный в системе выпуска сразу за приемной трубой глушителей. В нейтрализаторе находятся керамические элементы с микро каналами, на поверхности которых нанесены катализаторы: два окислительных и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода в безвредную двуокись углерода. Восстановительный катализатор (родий) ускоряет химическую реакцию восстановления оксидов азота и превращение их в безвредный азот. Для эффективной нейтрализации токсичных компонентов и наиболее полного сгорания воздушно-топливной смеси необходимо, чтобы на 14,6. 14,7 частей воздуха приходилась 1 часть топлива. Такая точность дозирования обеспечивается электронной системой впрыска топлива, которая непрерывно корректирует подачу топлива в зависимости от условий работы двигателя и сигнала от датчика концентрации кислорода в отработавших газах.

Предупреждение:для комплектаций с датчиком кислорода не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приведет к быстрому выходу из строя нейтрализатора и датчика концентрации кислорода.

Электронный блок управления (компьютер)

Электронный блок управления, расположенный под панелью приборов с правой стороны для семейства 2108 и в центре для семейства 2110, является управляющим центром системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля. В блок управления поступает следующая информация о:

  • положении и частоте вращения коленчатого вала;
  • массовом расходе воздуха двигателем;
  • температуре охлаждающей жидкости;
  • положении дроссельной заслонки;
  • содержании кислорода в отработавших газах (или о значении регулировки СО, для комплектации без датчика кислорода);
  • наличии детонации в двигателе;
  • напряжении в бортовой сети автомобиля;
  • скорости автомобиля;
  • запросе на включение кондиционера.

На основе полученной информации блок управляет следующими системами и приборами:

  • топливоподачей (форсунками и электробензонасосом);
  • системой зажигания;
  • регулятором холостого хода;
  • адсорбером системы улавливания паров бензина (если есть в комплектации);
  • вентилятором системы охлаждения двигателя;
  • муфтой компрессора кондиционера (если он есть на автомобиле);
  • системой диагностики.

Блок управления включает исполнительные механизмы (форсунки, различные реле, и т.д.) путем замыкания их на массу через выходные транзисторы блока управления. Единственное исключение — цепь реле топливного насоса. Только на обмотку этого реле блок управления подает напряжение +12 В. Электронный блок управления имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит в оперативной памяти диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта. Информацию о неполадках в работе системы впрыска можно получить через колодку диагностики, к которой подключается специальный диагностический прибор «ТЕСН 1«(GM) или ДСТ-2М(Россия).

Память

В блоке управления ISFI-2S имеется три вида памяти: постоянная, оперативная и постоянная программируемая. Постоянная память это неизменяемая память. Информация в нее записана физическим методом в микросхемах при изготовлении блока управления, и не может быть изменена. Постоянная память содержит полные алгоритмы управления системой впрыска. Программируемая постоянная память содержит различную калибровочную информацию по автомобилю и находится в отдельном модуле — в запоминающем устройстве калибровок, которое может отсоединяться от блока управления. Эти типы памяти не нуждаются в питании для сохранения записанной в них информации, которая не стирается при отключении питания. Оперативная память — это «блокнот» блока управления, в ней хранится вся текущая информация используемая для управления двигателем. Процессор блока управления может записывать туда информацию и считывать ее при необходимости. Эта память требует питания для сохранения записанной информации. При отключении питания от АБ хранящиеся в оперативной памяти коды неисправностей и другие данные стираются. Именно поэтому на автомобилях оборудованных электронными системами управления двигателем не рекомендуется отключать АБ без острой необходимости.

Примечание: в блоках управления «Январь-4» отсутствует постоянная память, и программное обеспечение и калибровочная информация хранятся в программируемой постоянной памяти (EPROM).

Запоминающее устройство калибровок

Оно применяется для того, чтобы одну модель блока управления можно было устанавливать на различных моделях автомобилей. Запоминающее устройство калибровок 1 (рис. 9-33) расположено внутри блока управлении под крышкой с нижней стороны и содержит информацию о массе автомобиля, двигателе, трансмиссии, главной передаче и некоторые другие данные. Если сам блок управления (без запоминающего устройства) может применяться на различных автомобилях, то запоминающее устройство калибровок специфично для каждой модели автомобиля. Поэтому при замене блока управления, запоминающее устройство калибровок должно соответствовать конкретной модели автомобиля.

Датчики

Датчик температуры охлаждающей жидкости представляет собой термистор, (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости, закрепленный на головке цилиндров, т.е. находится в потоке охлаждающей жидкости. При низкой температуре охлаждающей жидкости датчик имеет высокое сопротивление (100 кОм при -40 град.С), а при высокой температуре — низкое (70 0м при 130 град.С). Электронный блок управления подает к датчику через сопротивление определенной величины напряжение 5 В (образуя таким образом делитель напряжения) и измеряет падение напряжения на датчике. Оно будет высоким на холодном двигателе и низким, когда двигатель прогрет. Измерением падения напряжения блок управления узнает температуру охлаждающей жидкости. Эта температура влияет на работу большинства систем, которыми управляет блок управления.

Датчик концентрации кислорода устанавливается на приемной трубе глушителей,он отслеживает содержание остаточного кислорода в потоке отработавших газов. В датчике находится чувствительный элемент из окиси циркония. В зависимости от концентрации кислорода в отработавших газах датчик генерирует выходное напряжение. Оно изменяется приблизительно от 0,1 В (высокое содержание кислорода — бедная смесь) до 0,8 В (мало кислорода- богатая смесь). Для нормальной работы датчик должен иметь температуру не ниже 360 град.С. Поэтому для быстрого прогрева после пуска двигателя, в датчик встроен нагревательный элемент. Отслеживая выходное напряжение датчика концентрации кислорода, блок управления определяет какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на вы ходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) — дается команда на обеднение смеси.

Датчик массового расхода воздуха 2 (см. рис. 9-36) устанавливается между воздушным фильтром 1 и шлангом 10, идущим к дроссельному патрубку 3. В датчике используются три чувствительных элемента в виде струн. Один элемент определяет температуру воздуха, а два других, соединенные параллельно, нагреваются до определенной температуры, превышающей температуру воздуха. Проходящий через датчик воздух охлаждает нагреваемые элементы.. Электронная схема датчика определяет расход воздуха путем измерения электрической мощности, необходимой для поддержания заданной температуры нагреваемых элементов. Информацию о расходе воздуха датчик выдает в виде частотного сигнала (2-10 кГц). Чем больше расход воздуха, тем выше частота сигнала. Блок управления использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.

Датчик положения дроссельной заслонки установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания 5 В, а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к блоку управления. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 1,25 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В. Отслеживая выходное напряжение датчика блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. блок управления воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки), как нулевую отметку.

Датчик скорости автомобиля устанавливается на коробке передач на приводе спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на блок управления прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес. Для стандартных колес размером 165/70R13 датчик выдает 6 импульсов на каждый метр пробега.

Датчик детонации заворачивается в верхнюю часть блока цилиндров и улавливает аномальные вибрации (детонационные удары) в двигателе. Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. Блок управления по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

Потенциометр регулировки СО . В комплектации без датчика кислорода, служит для регулирования содержания СО в выхлопных газах автомобиля. Для систем GM, чтобы выполнить регулировку СО при помощи потенциометра, требуется разрешение с диагностического тестера. В случае отсутствия тестера для регулировки СО придется выполнить довольно утомительную процедуру которая приведена в FAQ. В системах на базе блоков управления «Январь-4» все проще, чтобы отрегулировать СО, достаточно просто покрутить потенциометр на холостом ходу.

Сигнал запроса на включение кондиционера

Если на автомобиле установлен кондиционер, то сигнал поступает от выключателя кондиционера на панели приборов. В данном случае блок управления получает информацию о том, что водитель желает включить кондиционер. Получив такой сигнал блок управления сначала подстраивает регулятор холостого хода, чтобы компенсировать дополнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.

Датчик положения коленчатого вала — индуктивный, предназначен для синхронизации работы блока управления с верхней мертвойточкой поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала двигателя. Сопротивление обмотки 650 Ом +/-10%, индуктивность 265 мГн+/- 15% на частоте 1 кГц при температуре 20 град.С. Датчик установлен на кронштейне крышки масляного насоса напротив задающего диска на шкиве привода генератора. У задающего диска имеется 58 зубьев с шагом в 6 град. ПКВ. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса (рис. 9-34) синхронизации («Опорного» импульса), который необходим для согласования работы контроллера с ВМТ поршней в 1-ом и 4-ом цилиндрах. Датчик генерирует импульсы напряжения при прохождении в его магнитном поле зубьев задающего диска. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1+0,41) мм. Блок управления по сигналам датчика положения коленчатого вала определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

Система питания

Система питания состоит из электробензонасоса 4 (рис. 9-35) топливного фильтра 6, топливо проводов 5 и 7, топливной рампы, регулятора давления 3 и форсунок 2. Электробензонасос подает топливо через фильтр к топливной рампе и форсункам 2. Регулятор поддерживает в топливной рампе давление на уровне 284. 325 кПа. Избыток топлива из регулятора возвращается в топливный бак по сливному трубопроводу 7. В топливной рампе имеется штуцер 1 для присоединения манометра 8 для контроля давления топлива. Электронный блок управления включает форсунки по очереди попарно через каждые 180 град. поворота коленчатого вала.

Электробензонасос . В системе питания применяется двухступенчатый неразборный электробензонасос роторно-роликового типа. Он обеспечивает подачу топлива под давлением более 284 кПа. Электробензонасос расположен непосредственно в топливном баке, что снижает возможность образования паровых пробок, т.к. топливо подается под давлением, а не под действием разрежения.

Топливный фильтр встроен в подающую магистраль 5 между электробензонасосом и топливной рампой, и установлен под днищем кузова, рядом с топливным баком. Фильтр неразборный, имеет стальной корпус с бумажным фильтрующим элементом. Топливные форсунки. Форсунки крепятся к топливной рампе, от которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях топливной рампы и впускной трубы форсунки уплотняются резиновыми уплотнительными кольцами.

Форсунка представляет собой электромагнитное устройство, сопротивление обмотки 11.8 Ом при 20 град.С. Когда блок управления включает форсунку, то клапан форсунки поднимается и открывает отверстия в направляющей пластине, через которые распыляется топливо. Коническая струя тонко распыленного топлива впрыскивается на впускной клапан. Здесь топливо испаряется, соприкасаясь с нагретыми деталями, и в парообразном состоянии попадает в камеру сгорания.

Регулятор давления топлива установлен на топливной рампе и предназначен для поддержания постоянного перепада давления между давлением топлива в форсунках и давлением воздуха во впускной трубе. Регулятор представляет собой мембранный клапан. С одной стороны на мембрану действует давление топлива, а с другой- усилие пружины и давление воздуха из ресивера, с которым регулятор соединен шлангом. Чем больше давление воздуха в ресивере (т.е. чем больше нагрузка на двигатель), тем больше давление топлива. При уменьшении нагрузки на двигатель, когда давление топлива превышает суммарное усилие от пружины и от давления воздуха, клапан регулятора открывается и избыток топлива по сливной магистрали возвращается в топливный бак.

Дроссельный патрубок 3 (см. рис. 9-36) установлен на входе в ресивер. В нем находится дроссельная заслонка, датчик положения дроссельной заслонки и регулятор холостого хода. На патрубке имеются также штуцеры для отсоса картерных газов и паров топлива из адсорбера. Регулятор холостого хода состоит из клапана с конусной иглой, управляемого шаговым электродвигателем. Регулятор обеспечивает желаемую частоту вращения коленчатого вала на холостом ходу, изменяя количество воздуха, проходящего в обход закрытой дроссельной заслонки.Когда игла регулятора полностью выдвинута (что соответствует 0 шагов) клапан полностью перекрывает проход воздуха. Когда игла вдвигается, то обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла. Полностью убранное положение иглы соответствует 255 шагам.

Система улавливания паров бензина

В системе применен метод улавливания паров бензина адсорбером (емкостью с активированным углем). Адсорбер установлен в моторном отсеке, и соединен трубопроводами с топливным баком и дроссельным патрубком. На крышке адсорбера расположен электромагнитный клапан, которым по сигналам блока управления переключаются режимы работы системы. Когда двигатель не работает, электромагнитный клапан закрыт и пары бензина из топливного бака по трубопроводу подводятся к адсорберу, где поглощаются гранулированным активированным углем. При работающем двигателе блок управления открывает и закрывает электромагнитный клапан импульсами с частотой 16 Гц. Когда клапан открыт, он перекрывает подачу паров бензина и открывает отверстие для доступа а адсорбер воздуха. Происходит продувка адсорбера. Смесь паров бензина с воздухом отсасывается из адсорбера по шлангу в дроссельный патрубок за дроссельную заслонку. Скважность импульсов, подаваемых блоком управления на клапан может изменяться от 0 до 100%. Скважность равная 0% означает, что клапан не открывается и продувки адсорбера нет. Скважность равная 100% — клапан практически не закрывается и происходит полная продувка адсорбера. Чем выше расход воздуха двигателем, тем больше объем допускаемой продувки. Блок управления включает электромагнитный клапан продувки при следующих условиях:

  • температура охлаждающей жидкости выше 75град.С;
  • система управления топливоподачей работает в режиме замкнутого цикла;
  • скорость автомобиля больше 10 км/ч.

После включения продувка продолжается до полного открытия дроссельной заслонки, когда клапан запирается.

Система зажигания

Система зажигания — электронная, высокой энергии. Блок управления по сигналам датчиков определяет момент зажигания и выдает управляющие импульсы на модуль зажигания, в котором объединены две катушки зажигания и коммутатор. Модуль зажигания закреплен на блоке цилиндров двигателя с той стороны, где находятся свечи зажигания. Система зажигания не имеет каких-либо подвижных деталей, и поэтому не требует обслуживания и регулировок в эксплуатации. Для точного расчета момента зажигания блоком управления используется следующая информация:

  • частота вращения и положение коленчатого вала;
  • массовый расход воздуха;
  • положение дроссельной заслонки
  • температура охлаждающей жидкости;
  • наличие детонации.

Модуль зажигания по сигналам блока управления выдает импульсы высокого напряжения на свечи зажигания. Причем включаются сразу две свечи: 1 и 4 или 2 и 3 цилиндров. Искрообразование происходит одновременно в цилиндре, находящемся в конце такта сжатия (рабочая искра), и в цилиндре, где происходит конец такта выпуска (холостая искра).

Работа системы впрыска

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от блока управления. Блок управления отслеживает множество данных о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками. Эту длительность называют шириной или длительностью импульса впрыска. Для увеличения количества подаваемого топлива ширина импульса увеличивается, а для уменьшения подачи топлива — уменьшается. Ширина (длительность) импульса впрыска подбирается блоком управления также и в зависимости от различных условий работы двигателя, таких, например, как пуск, высокогорье, мощностное обогащение рабочей смеси, торможение двигателем и т.д. Обычно к форсункам подается один импульс на один опорный импульс от датчика положения коленчатого вала. Причем импульсы подаются поочередно сразу на две форсунки. Например, сначала на форсунки цилиндров 1 и 4, затем через 180град. ПКВ на форсунки цилиндров 2 и 3, затем через 180град. ПКВ снова на форсунки цилиндров 1 и 4, и т.д. Впрыск топлива осуществляется одним из двух способов: либо синхронно с опорными импульсами от датчика положения коленчатого вала либо асинхронно, независимо от опорных импульсов. Синхронный впрыск топлива — наиболее употребительный способ подачи топлива. Асинхронный впрыск топлива применяется, когда необходимо дополнительное топливо при резком открытии дроссельной заслонки, о чем сигнализирует датчик положения дроссельной заслонки. Этот впрыск топлива подобен подаче топлива ускорительным насосом карбюратора при резком открытии дроссельной заслонки. Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются блоком управления и описаны ниже.

Режимы управления топливоподачей

Режим пуска двигателя

При включении зажигания блок управления включает на 2 с реле топливного насоса, и насос создает давление в магистрали подачи топлива к топливной рампе. Блок управления учитывает показания от датчиков температуры охлаждающей жидкости и положения дроссельной заслонки и определяет правильное соотношение воздух/топливо для пуска. После начала вращения коленчатого вала блок управления будет работать в пусковом режиме пока обороты двигателя не превысят 500 об/мин, в противном случае возможно переключение на режим «продувки» двигателя.

Режим продувки двигателя

Если двигатель «залит топливом», он может быть пущен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. Блок управления в этом режиме не выдает на форсунку импульсы, что «очищает» залитый двигатель. Блок управления поддерживает указанную длительность импульсов до тех пор, пока обороты двигателя ниже 500 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).

Примечание. Если дроссельная заслонка удерживается почти полностью открытой при попытке нормального пуска «не залитого» двигателя, то двигатель может не пуститься, т.к. при полностью открытой дроссельной заслонке импульсы впрыска на форсунки не подаются.

Режим открытого цикла (без обратной связи по датчику кислорода)

После пуска двигателя (когда обороты более 500 об/мин ) блок управления будет управлять системой подачи топлива в режиме «открытого цикла». На этом режиме он игнорирует сигнал от датчика концентрации кислорода и рассчитывает длительность импульса па форсунку по сигналам от следующих датчиков:

  • датчика положения коленчатого вала;
  • датчика массового расхода воздуха;
  • датчика температуры охлаждающей жидкости;
  • датчика положения дроссельной заслонки.

На режиме открытого цикла расчетная длительность импульса может давать соотношение воздух/топливо отличное от 14,7:1. Это будет, например, на холодном двигателе, т.к. в этом случае для получения хороших нагрузочных характеристик необходима обогащенная смесь. Блок управления будет оставаться в режиме открытого цикла до тех пор, пока не будут выполнены все следующие условия:

  • сигнал датчика концентрации кислорода начал изменяться, показывая, что он достаточно прогрет для нормальной работы;
  • температура охлаждающей жидкости стала больше 32град.С;
  • двигатель проработал определенный период времени после пуска. Это время может варьироваться от 6 сек до 5 мин в зависимости от температуры охлаждающей жидкости в момент пуска.

Режим замкнутого цикла (с обратной связью по датчику кислорода)

На этом режиме блок управления сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в режиме открытого цикла. Отличие состоит в том, что в режиме замкнутого цикла еще используется сигнал от датчика концентрации кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6. 14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Режим ускорения

Блок управления следит за резкими изменениями положения дроссельной заслонки и за расходом воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса на форсунки, Если возросшая потребность в топливе слишком велика из-за резкого открытия дроссельной заслонки, то блок управления может добавить асинхронные импульсы на форсунки в промежутках между синхронными импульсами, которых при нормальной работе приходится один на каждый опорный импульс от датчика положения коленчатого вала.

Мощностное обогащение

Для определения моментов, в которые необходима максимальная мощность двигателя, блок управления следит за положением дроссельной заслонки и частотой вращения коленчатого вала. Для развития максимальной мощности требуется более богатый состав воздушно-топливной смеси, чем 14,7:1, т.е. больше топлива. В этом режиме блок управления изменяет состав смеси на соотношение 12:1, и не учитывает сигнал от датчика концентрации кислорода, т.к. тот показывает на переобогащенность смеси.

Режим торможения

Когда благодаря закрытой дроссельной заслонке падают обороты двигателя, то оставшееся топливо во впускной трубе может быть причиной увеличения токсичности отработавших газов. Блок управления отслеживает поворот заслонки на закрытие, а также уменьшение расхода воздуха и снижает подачу топлива сокращением длительности импульсов на форсунки.

Торможение двигателем

Когда происходит торможение двигателем при включенных сцеплении и передаче, блок управления может кратковременно прекратить подачу импульсов на форсунки. Такой режим наступает, когда выполняются следующие условия:

  • температура охлаждающей жидкости выше 20 град.С;
  • частота вращения коленчатого вала выше 1800 мин -1. скорость автомобиля более 20 км/ч;
  • дроссельная заслонка закрыта;
  • массовый расход воздуха более 43 г/сек.

Возобновление импульсов впрыска топлива произойдет при наличии любого из следующих условий:

  • частота вращения коленчатого вала ниже 1600 мин -1,
  • скорость автомобиля меньше 20 км/ч;
  • дроссельная заслонка открыта на 2 % или более;
  • массовый расход топлива больше 38 г/сек;
  • выключено сцепление, что определяется по быстрому падению оборотов.

Режим корректировки напряжения аккумуляторной батареи

При понижении напряжения аккумуляторной батареи форсунки открываются медленнее. Блок управления компенсирует это увеличением длительности импульсов на форсунки и оборотов холостого хода. Кроме того, увеличивается время накопления тока на катушках модуля зажигания.

Режим отключения подачи топлива

Топливо не впрыскивается форсунками при выключенном зажигании, чтобы не происходило самовоспламенения топлива в цилиндрах. Кроме того, не подаются импульсы на форсунки, если блок управления не получает опорных импульсов от датчика положения коленчатого вала, что означает остановку двигателя. Режим отключения подачи TOILAUBB возможен также при высоких оборотах двигателя (свыше 6188 об/мин), для защиты его от разноса. В последнем случае подача топлива возобновляется как только обороты двигателя упадут ниже 6000 об/мин.

Диагностика

Введение

Диагностика системы управления двигателем с электронным впрыском топлива достаточно проста, если придерживаться правильного порядка проведени диагностики. Первым и наиболее важным условием успешного установления причины неисправности любой системы является понимание работы системы в нормальный условиях. Вторым весьма желательным условием является наличие необходимых средств диагностики, справочных пособий и руководств по ремонту.

Не следует забывать, что за всеми жгутами проводов, электроникой и датчиками стоит базовый двигатель внутреннего сгорания. Работоспособность системы управления двигателем и системы впрыска в частности основана на надлежащем функционировании механических систем. В качестве напоминани ниже приводится ряд проблем «базового двигателя», вызывающих условия, которые могут быть ошибочно приписаны работе «электроники» системы управления двигателем:

  • низкая степень сжатия;
  • утечки разрежения;
  • сопротивление системы выпуска;
  • негерметичность или закупорка топливной системы;
  • отклонения в фазах газораспределения;
  • плохое качество топлива;
  • несоблюдение сроков проведения ТО.

Электронный блок управления осуществляет постоянную самодиагностику по ряду функций управления. Для сообщений о причинах неисправностей ЭБУ использует язык диагностических кодов. При обнаружении электронным блоком управления неисправности, ее код заносится в память и включается контрольна лампа «CHECK ENGINE».

Контрольная лампа находится на приборной панели и выполняет следующие функции:

Оповещает водителя о неисправности и необходимости проведени ТО в возможно короткий срок. Включение лампы НЕ ОЗНАЧАЕТ, что двигатель необходимо заглушить.

Отображает диагностические коды, хранящиеся в памяти ЭБУ и помогающие в диагностике неисправностей ситемы.

При включении зажигания и неработающем двигателе контрольная лампа загорается, свидетельствуя об исправности лампочки и системы самодиагностики. После запуска двигателя лампа выключается. Если лампа продолжает гореть, это означает, что система самодиагностики обнаружила неисправность. Если неисправность самоустраняется, в большинстве случаев через 10 секунд лампа выключается, но диагностический код сохраняется в памяти ЭБУ.

Коды неисправностей систем ф.GM

НАИМЕНОВАНИЕ НЕИСПРАВНОСТИ 13 Отсутствует сигнал датчика кислорода 14 Недостаточное напряжение сигнала с датчика температуры охлаждающей жидкости 15 Завышенное напряжение сигнала с датчика темпрературы охлаждающей жидкости 16 Высокое напряжение бортсети 19 Ошибка датчика положения коленвала 21 Завышенное напряжение сигнала с датчика положения дроссельной заслонки 22 Заниженное напряжение сигнала с датчика положения дроссельной заслонки 24 Отсутствует сигнал скорости автомобиля 34 Неисправность датчика массового расхода воздуха 35 Ошибка частоты вращения КВ на холостом ходу 41 Неисправность датчика распредвала 42 Неисправность цепи управления электронным зажиганием 43 Неисправность канала детонации 44 Обедненный состав смеси 45 Обогащенный состав смеси 49 Утечка вакуума в адсорбере 51 Ошибка запоминающего устройства калибровок 53 Неисправность потенциометра регулировки СО* 55 Датчик кислорода «беден» при мощностном обогащении 61 Деградировавший датчик кислорода 66 Ошибка сброса электронного блока управления

Примечание: значком ‘*’ помечены коды неисправностей для комплектации без датчика кислорода.

Коды неисправностей систем на базе контроллеров «Январь-4»

НАИМЕНОВАНИЕ НЕИСПРАВНОСТИ 14 Высокий уровень сигнала датчика темп. охл. жидкости 15 Низкий уровень сигнала датчика темп. охл. жидкости 16 Высокое напряжение бортсети 17 Низкий уровень бортового напряжения 19 Ошибка датчика положения коленвала 21 Высокий уровень сигнала датчика положения дросселя 22 Низкий уровень сигнала датчика положения дросселя 24 Отсутствует сигнал скорости автомобиля 27 Высокий уровень сигнала потенциометра коррекции СО 28 Низкий уровень сигнала потенциометра коррекции СО 33 Высокий уровень сигнала датчика расхода воздуха 34 Низкий уровень сигнала датчика расхода воздуха 35 Ошибка частоты вращения КВ на холостом ходу 41 Ошибка датчика фаз (отсутствует сигнал) 43 Ошибка в цепи датчика детонации 51 Ошибка постоянного запоминающего устройства 52 Ошибка оперативного запоминающего устройства 53 Ошибка EEPROM 61 Ошибка связи с иммобилизатором 66 Ошибка сброса электронного блока управления

Считывание кодов неисправностей

Для связи с электронным блоком управления предусмотрена колодка диагностики. Коды, хранящиеся в памяти ЭБУ, можно считать с помощью диагностического тестера «TECH 1» или ДСТ-2М, подключив его к колодке диагностики, а также при помощи контрольной лампы «CHECK ENGINE».

Для того чтобы считать коды неисправностей при помощи контрольной лампы, необходимо замкнуть выводы А и В колодки диагностики и включить зажигание, не заводя двигатель. В этот момент лампа СЕ должна выдать код 12 три раза подряд. Последовательность следующая: включение лампы, короткая пауза, два включения подряд, длинная пауза и так еще два раза. Код 12 не является кодом неисправности, он свидетельствует о том, что система самодиагностики работоспособна. Если код 12 отсутствует, это означает что система самодиагностики неисправна.

После выдачи кода 12 лампа СЕ начнет выдавать обнаруженные коды неисправности в порядке возрастания их номера. Каждый код выдается трижды. И так по кругу. Если нет обнаруженных кодов неисправностей будет выдаваться только код 12.

Очистка кодов неисправностей

Имеются два способа стирания из памяти электронного блока управления кодов неиисправностей по завершении ремонта или для контроля повторного появления. Коды можно стереть при помощи диагностического тестера или отключив блок управления от АБ на 30 секунд.

Основная часть информации взята из «Руководства по ремонту ВАЗ — 2108, — 2109» составители : А.П. Игнатов, К.В. Новокшонов , К.Б. Пятков 1995 г.

Официальная информация ВАЗ.  Назначение контактов выводов («распиновка») ЭБУ Январь 5, Bosch M1.5.4, Bosch MP7. Назначение контактов выводов («распиновка») ЭБУ M7.9.7 Назначение контактов выводов («распиновка») ЭБУ Январь 4/4.1 и GM Назначение контактов выводов («распиновка») ЭБУ М10.3 Назначение контактов выводов («распиновка») ЭБУ M17.9.7 (ВАЗ) Назначение контактов выводов («распиновка») ЭБУ M74 М86 Евро‑5. Электронная система управления двигателем 21129 автомобилей семейства LADA VESTA с контроллером – устройство и диагностика Скачать МE17.9.7 / M75  Евро‑4. Электронная система управления двигателем автомобилей семейств LADA Priora, LADA Kalina, LADA 4×4, ТИ 3100.25100.12040 Скачать М74 Евро‑4. Электронная система управления двигателем автомобилей семейств LADA SAMARA, LADA KALINA, LADA GRANTA, ТИ 3100.25100.12039 Скачать М74 Евро‑4. Электронная система управления двигателем автомобилей семейств LADA KALINA‑2, LADA GRANTA 16V, ТИ 3100.25100.12052 Скачать М73 Евро‑3. Электронная система управления двигателем автомобилей семейств Lada 110, Lada Samara, Lada 2105, 2107 – устройство и диагностика. Тольятти, АО АВТОВАЗ, 2009 г.  Скачать Bosch M7.9.7.  Система управления двигателем ВАЗ 21114 (1,6 л. 8 кл.) и ВАЗ 21124 (1,6 л. 16 кл.) с распределенным впрыском топлива под нормы токсичности Евро‑3 автомобилей ВАЗ 11183, ВАЗ 21101, ВАЗ 21104. Руководство по тех. обслуживанию и ремонту.  Скачать Bosch M7.9.7.  Система управления двигателем ВАЗ 21114 (1,6 л. 8 кл.) с распределенным впрыском топлива под нормы токсичности Евро‑2. Руководство по диагностике и ремонту.  Скачать. Bosch M7.9.7. Электрическая схема системы распределенного впрыска ВАЗ 21053, 2107, 21074 (1,5 л, 8 кл.)  под нормы токсичности ЕВРО‑2 Скачать Bosch MP7.0H. Система управления двигателем ВАЗ 2111 (1,5 л, 8 кл.) с распределенным впрыском топлива под нормы токсичности ЕВРО‑2. Скачать Bosch MP7.0H. Система управления двигателем ВАЗ 2111 (1,5 л, 8 кл.) и 2112 (1,5 л, 16 кл) с распределенным последовательным впрыском топлива под нормы токсичности ЕВРО‑3 Скачать Bosch M1.5.4N. Электрическая схема системы распределенного впрыска ВАЗ 2107 (1,5 л, 8 кл.)  под нормы токсичности ЕВРО‑2  Скачать Январь 4.1. Система управления двигателем ВАЗ 2111 (1,5 л. 8 кл.) с распределенным впрыском топлива под нормы токсичности России. Руководство диагностике и ремонту.  Скачать Система управления двигателем ВАЗ 2104 (1,45 л. 8 кл.)  с распределенным впрыском топлива под нормы токсичности Евро‑2.  Руководство по тех. обслуживанию и ремонту.  Скачать Шевроле – Нива
Лада «Нива» Электросхемы СУД ВАЗ-2123 – 40 Евро-II (Bosch MP7.0) Руководство по эксплуатации Руководство по ремонту Инструкция по работе с иммобилайзером АПС‑6 Руководство по техническому обслуживанию и ремонту системы управления двигателем Трудоемкости работ по ремонту и техническому обслуживанию Технология технического обслуживания Список взаимозаменяемых деталей Схемы электрооборудования Каталог деталей Руководство по ремонту 2123 2123 Методическое пособие курса повышения квалификации по устройству и диагностике электронных систем управления двигателем (HandOut) Lada Niva 2020 Схемы жгутов проводов Lada Niva GLC Glonass общая электросхема Lada Niva Urban 21310 – 007 – 52 oбщая электросхема

Лада «Калина»

Автомобиль ВАЗ 11183 и его модификации. Технология технического обслуживания и ремонта. Трудоемкости работ по тех. обслуживанию автомобилей ВАЗ 11183. Электросхемы Назначение выводов Системы дистанционного управления электропакетом «Норма» на а/м ВАЗ-11183 Электросхемы Калина 2194х Схемы 2192, 2194 по состоянию на 05.2017 АПС 6.1 и Система Управления Электропакетом «Люкс» (1183 – 3763040/1183 – 3763040 – 10). Схема подключения, устройство и порядок работы. Подушки безопасности а/м Калина  ABS автомобилей семейств LADA Kalina и LADA Priora устройство, диагностика, снятие и установка основных узлов. ТИ 3100.25100.13068. ЭМУРУ – Электро Механический Усилитель Рулевого Управления ВАЗ-11183

ВАЗ 2170 «Приора»

Тех. характеристики, номенклатура, оригинальные узлы. Сборник технологических инструкций. Альбом электрических схем. Альбом электрических схем. (на 04/2016 г.) Схемы ЭСУД а/м Приора, 21702 – 0000050 – 40, 21705 – 0000055 – 41, 21705 – 0000057 – 41/44/45 Каталог деталей и сборочных единиц. Система надувных подушек безопасности. Схема подключения блока комфорта а/м «Приора». Автоматизированная механическая трансмиссия а/м Приора, основные узлы и агрегаты Кондиционер «PANASONIC» Тех. инструкция.

Лада «Гранта»

Трудоемкости работ по техническому обслуживанию и ремонту.  Сборник технологических инструкций по ремонту и техническому обслуживанию. Схема ЭСУД  Лада Гранта Схема ЭСУД 2191 (05/2017) Схемы ЭСУД 2191 (15/2019) Гранта 2190. Каталог деталей и сборочных единиц АКПП снятие/установка основных узлов и деталей. Автоматизированная механическая трансмиссия а/м Лада Гранта, Приора. Система управления. ТИ 3100.25100.12053. Система управления АКП 21902 – 1700010 «JATCO». Устройство, принцип работы, диагностика. ТИ 3100.25100.12049. Lada Granta FL. Сборник электрических схем. Система Lada Connect – устройство и диагностика неисправностей ТИ.3100.25100.12071

Лада «Веста»

Электрические мастер-схемы 21179 Альбом электрических схем Vesta SW Cross (CVT) Усилитель электромеханический рулевого управления а/м Lada Vesta – устройство и диагностика. ТИ 3100.25100.12067 Электрооборудование автомобиля LADA VESTA снятие – установка основных узлов и агрегатов Электрооборудование автомобиля LADA VESTA CNG снятие установка основных узлов и агрегатов ЭСУД 21129 автомобилей семейства LADA VESTA с контроллером М86 ЕВРО‑5 – устройство и диагностика. Изм. 2 Электронная система контроля доступа Lada Vesta. ТИ 3100.25100.12057 Система питания КПГ LADA VESTA. ТИ 3100.25100.12079 Система управления автоматизированной механической трансмиссей LADA Vesta. ТИ 3100.25100.12055 Система экстренного реагирования при авариях автомобилей LADA VESTA. ТИ 3100.25100.12064 Двигатель ВАЗ-21179, устройство и ремонт изм.3 ТИ.3100.25100.40207 Комбинация приборов – диагностика неисправностей. ТИ.3100.25100.12072 Система управления CVT «JATCO». Устройство, принцип работы, диагностика. ТИ 3100.25100.12070 Блок дополнительных функций кузовной электроники. ТИ 3100.25100.12068

Лада «XRAY»

Lada XRAY Технические условия 4514 – 033 – 00232934 – 2018. (Изменение 5) Lada XRAY Электрооборудование снятие и установка основных узлов и деталей. ТИ 3100.25100.20597 ЦБКЭ – Назначение, функции, диагностика. ТИ 3100.25100.12051 ЦБКЭ автомобилей LADA VESTA, LADA XRAY – устройство, диагностика неисправностей, ТИ 3100.25100.12059 Lada XRAY Трансмиссия – снятие, установка. ТИ.3100.25100.20593 (Изменение 3) Lada XRAY Система управления бесступенчатой трансмиссией (CVT). ТИ.3100.25100.12070. Lada XRAY Система ЭГУР. Диагностика неисправностей. ТИ 3100.25100.12079 Lada XRAY Переключатель режимов работы функции EDL системы курсовой устойчивости. ТИ.3100.25100.12069 Лада «Largus» Схемы электрических соединений автомобилей LADA Largus K4M E5. 3100.25100.12060 LADA Largus снятие – установка основных оригинальных узлов. ТИ.3100.25100.20538 LADA Largus CNG снятие – установка основных оригинальных узлов. ТИ.3100.25100.20613 Lada Niva «Travel» Сборник схем отдельных функций LADA NIVA Travel Classic Схемы отдельных функций LADA NIVA Travel Classic Схемы электрических соединений автомобилей LADA (4×4, Samara, Kalina, Priora). Альбом электрических схемы автомобилей ВАЗ за 2011 г (Системы E‑GAS) ВАЗ 2115. Оригинальные узлы. Технология технического обслуживания и ремонта. Тольятти, АО АВТОВАЗ, 1997 г. Принципиальная электрическая схема ЭБУ М73. Принципиальная электрическая схема ЭБУ Январь 7.2. Монтажная схема ЭБУ Январь 7.2. Принципиальная электрическая схема ЭБУ VS5.1 (Старая аппаратная модификация). Принципиальная электрическая схема ЭБУ VS5.1 (Новая аппаратная модификация). Принципиальная электрическая схема  ЭБУ: Январь 4   Январь 4.1 Принципиальная электрическая схема ЭБУ Январь 5.1:     Вариант 1    Вариант 2   Вариант 3 Инструкция пользователя на иммобилизатор АПС‑6. Инструкция пользователя на иммобилизатор АПС‑4. Новая версия. Бортовая система контроля БСК-10. Описание, схема, прошивка контроллера. Кондиционер на ВАЗ – Инструкция по установке. Таблицы для замены блока BOSCH MP7.0 на Январь 5.1 и 5.1.1 Замена блока Bosсh MP 7.0 на Bosch M1.5.4 (M1V13S64, широкополосный ДД) или Январь‑5.1. Перечень систем распределенного впрыска топлива для автомобилей ВАЗ Комплектация ЭБУ ВАЗ (1,5 л.) – Жгуты, датчики, исполнительные механизмы. Основные параметры систем впрыска Диагностический коннектор OBD‑2, назначение контактов и расшифровка кодов неисправностей. Диагностика СУД – учебный курс для начинающих.

libcats.org

Обложка книги Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива.

Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива.

Книга Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива. Система управления двигателем ВАЗ-2111 с распределенным впрыском топлива. Книги Авто Автор: Ливр Год издания: 1998 Формат: pdf Издат.:Ливр Страниц: 147 Размер: 8.5 Мб Язык: Русский0 (голосов: 0) Оценка:Настоящее Руководство разработано Генеральным департаментом развития АО АВТОВАЗ и предназначено для инженерно-технических работников предприятий по обслуживанию и ремонту автомобилей, а также может использоваться как учебное пособие при подготовке специалистов по ремонту автомобилей.В Руководстве описывается устройство и ремонт только элементов электронной системы управления двигателем с распределенным впрыском топлива по состоянию на декабрь 1997 г. По вопросам ремонта других узлов двигателя или автомобиля необходимо обращаться к Руководству по ремонту соответствующей модели автомобиля.

Популярные книги за неделю:

Только что пользователи скачали эти книги:

Руководство: система управления двигателем ВАЗ-2111 с распределенным впрыском топлива

Настоящее Руководство разработано Генеральным департаментом развития АО АВТОВАЗ и предназначено для инженерно-технических работников предприятий по обслуживанию и ремонту автомобилей, а также может использоваться как учебное пособие при подготовке специалистов по ремонту автомобилей.

В Руководстве описывается устройство и ремонт только элементов электронной системы управления двигателем с распределенным впрыском топлива по состоянию на декабрь 1997 г. По вопросам ремонта других узлов двигателя или автомобиля необходимо обращаться к Руководству по ремонту соответствующей модели автомобиля.

Издательство: Ливр
Год издания: 1998
Страниц: 147
Язык: русский
Формат: pdf
Размер: 8.5 Мб (rar + 3%)

Скачать с

Внимание! У Вас нет прав для просмотра скрытого текста.

Система управления двигателем ВАЗ-2111 (1,5 л 8 кл.) с распределенным впрыском топлива (контроллер Январь-4.1)


Год выпуска: 2000
Авторы: Косарев С.Н., Яметов В.А., Козлов П.Л.
Жанр: Руководство по эксплуатации и ремонту
Формат: PDF / DjVu
Количество страниц: 97
Описание: Настоящее руководство является учебным пособием, необходимым для ремонта и технического обслуживания си­стемы распределенного впрыска топлива.

Приведенная в Руководстве информация верна для контроллера Январь-4.1 (2111 -1411020-22).

Настоящее Руководство разработано группой специалистов Генерального департамента развития АО АвтоВАЗ с учетом практического опыта эксплуатации и ремонта автомобилей. Описаны устройство, назначение и ремонт эле­ментов электронной системы управления двигателем ВАЗ-2111 (1,5 л, 8 клапанов) с распределенным впрыском топ­лива по состоянию на июнь 2000 г. В основных разделах Руководства описывается электронная система управления двигателем автомобилей BA3-21083, 21093,21099. Особенности устройства и ремонта элементов системы управле­ния двигателей автомобилей ВАЗ-21102, 21103 приведены в разделе 3.

Предназначено для инженерно-технических работников предприятий по обслуживанию и ремонту автомобилей, по­вышения квалификации автомехаников и специалистов сервисных станций.

Рекомендуется как учебное пособие для сту­дентов и преподавателей ВУЗов и техникумов автотранспортного направления. Также может быть полезно широкому кругу автолюбителей, желающих получить знания о правильном ремонте и обслуживании автомобильной техники.

Оглавление:

1. Устройство и ремонт
Контролируемые параметры
Принятые в книге сокращения
Управляемые устройства
1.1 Контроллер и датчики
Контроллер
Ремонт контроллера
Датчик температуры охлаждающей жидкости (ДТОЖ)
Датчик массового расхода воздуха (ДМРВ)
Датчик положения дроссельной заслонки(ДПДЗ)
Датчик положения коленчатого вала (ДПКВ)
Датчик скорости автомобиля (ДСА)
СО-потенциометр
Иммобилизатор
1.2. Система подачи топлива
Общее описание
Порядок сбрасывания давления в системе подачи топлива
Электробензонасос
Топливный фильтр
Рампа форсунок
Топливные форсунки
Регулятор давления топлива
Режимы управления подачей топлива
1.3. Система зажигания
Общее описание
Модуль зажигания
1.4. Система гашения детонации
1.5. Система кондиционирования воздуха
1.6. Вентилятор системы охлаждения
1.7. Система вентиляции картера
Неисправности и их следствия
1.8. Система впуска топлива
Воздушный фильтр
Дроссельный патрубок
Регулятор холостого хода (РХХ)
1.9. Провода и предохранители
Защита цепей
Замена контактов в негерметизированных колодках
Замена отводов герметизированных колодок.
Сращивание медного провода с использованием зажимов
Сращивание медного провода с помощью зажима, термоосаждающейся трубки и термопластичного
наполнителя
Сращивание скрученных экранированных проводов
Ремонт негерметизированных колодок
Ремонт герметизированных колодок
Ремонт контактов
Обслуживание жгутов проводов
2. ДИАГНОСТИКА
2.1. Введение
Проверка контактов
2.2. Меры предосторожности при диагностике
2.3. Общее описание диагностики
Контрольная лампа «CHECK ENGINE»
Типы диагностических кодов
Считывание кодов
Диагностические коды контроллера «Январь-4»
Режим отображения
Порядок проведения диагностики
Проверка диагностической цепи
2.4. Диагностический прибор DST-2
Ограничения прибора DST-2
Контроль исполнительных механизмов
Проверка прокрутки
Очистка кодов неисправностей
Типовые значения параметров, контролируемых прибором DST-2
2.5 Расположение предохранителей и реле, силовые цепи
2.6. Соединения с массой жгута проводов системы впрыска
2.7. Схема электрических соединений системы управления двигателем
2.8. Описание контактов контроллера
2.9. Диагностические карты
Карта А. Проверка диагностической цепи
Карта А-1. Не горит лампа «CHECK ENGINE»
Карта А-2. Нет данных с колодки диагностики или кода 12
Карта А-3. Коленчатый вал прокручивается, но двигатель не запускается
Карта А-4. Проверка реле зажигания и силовой цепи
Карта А-5. Проверка электрической цепи системы подачи топлива
Карта А-6. Диагностика системы подачи топлива
Код 14. Высокий уровень сигнала датчика температуры охлаждающей жидкости
Код 15. Низкий уровень сигнала датчика температуры охлаждающей жидкости
Код 16. Повышенное напряжение в бортовой сети
Код 17. Пониженное напряжение в бортовой сети
Код 19. Неверный сигнал датчика положения коленчатого вала
Код 21. Неверное положение дроссельной заслонки (высокое напряжение сигнала)
Код 22. Неверное положение дроссельной заслонки (низкое напряжение сигнала)
Код 24. Нет сигнала датчика скорости автомобиля
Код 27. Неверный сигнал СО-потенциометра (высокий уровень сигнала)
Код 28. Неверный сигнал СО-потенциометра (низкий уровень сигнала)
Код 33. Неверный сигнал датчика массового расхода воздуха (высокая частота на выходе датчика)
Код 34. Неверный сигнал датчика массового расхода воздуха (низкая частота на выходе датчика)
Код 35. Отклонение оборотов холостого хода
Код 43. Неверный сигнал датчика детонации
Код 51. Ошибка программируемого постоянного запоминающего устройства (ППЗУ)
Код 52. Ошибка ОЗУ
2.9В. Диагностические карты неисправностей
2.9С. Диагностические карты С (карты проверки узлов системы управления двигателем)
Карта С-1. Проверка датчика положения дроссельной заслонки
Карта С-2. Проверка баланса форсунок
Карта С-3. Пропуски в системе зажигания
Карта С-4. Проверка системы гашения детонации
Карта С-5. Проверка цепи управления реле электровентилятора системы охлаждения
Карта С-6. Проверка системы вентиляции картера
3. ОСОБЕННОСТИ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ АВТОМОБИЛЕЙ ВАЗ-21102, -21103
3.1. Автомобиль ВАЗ-21102
3.2. Автомобиль ВАЗ-21103
Дополнение к таблице признаков неисправностей 32-контактной розовой колодки контроллера
«Январь-4» для системы управления двигателем ВАЗ-2112
Расположение элементов электронной системы управления двигателем с распределенным
последовательным впрыском топлива в подкапотном пространстве
Код 41. Неверный сигнал датчика фаз
Приложение 1. Моменты затяжки резьбовых соединений (Н-м)
Приложение 2. Специальный инструмент для ремонта и технического обслуживания системы управления двигателем с распределенным впрыском топлива

Система распределенного (многоточечного) впрыска топлива MPI используется только на бензиновых двигателях и является наиболее популярной в мире. В данной системе каждый цилиндр оснащается индивидуальной форсункой, которая впрыскивает топливо непосредственно перед впускным клапаном. Многоточечный впрыск идеально соответствует высоким экологическим стандартам, а также требованиям, предъявляемым к смесеобразованию в современных двигателях.

Содержание

  1. Основной принцип работы системы MPI
  2. Конструкция системы многоточечного впрыска
  3. Режимы работы MPI
  4. Отличия системы MPI
  5. Преимущества и недостатки многоточечного впрыска

Основной принцип работы системы MPI

Обозначение MPI расшифровывается как Multi-point injection, что означает “многоточечный впрыск”. Наиболее часто такая маркировка встречается на европейских автомобилях.

Конструкция системы многоточечного впрыска

Она состоит из следующих элементов:

  • дроссельная заслонка;
  • распределительная магистраль или топливная рампа;
  • электромагнитные форсунки (инжекторы);
  • датчик массового расхода воздуха или датчик давления и температуры воздуха;
  • регулятор давления топлива.

Схематическое изображение устройства

Схема распределенного впрыска

В такой системе питания воздух из атмосферы проходит через воздушный фильтр, датчик массового расхода воздуха и затем через дроссельную заслонку попадает во впускной коллектор. Далее он распределяется по каналам цилиндров.

В свою очередь, топливо подается при помощи насоса через топливный фильтр и рампу к форсункам. Последние расположены вблизи впускных клапанов цилиндров, что снижает потери топлива и вероятность его оседания во впускном коллекторе. Работу форсунок контролирует ЭБУ двигателя. Количество топлива, которое должно поступить через форсунки, блок управления рассчитывает на основе информации о режимах, нагрузке и оборотах двигателя, а также на основе информации о количестве поступившего в систему воздуха, полученной от целого комплекса датчиков (температуры, давления). В соответствии с расчетами, ЭБУ подает импульсные сигналы на электромагнитные форсунки, приводя их в работу.

Помимо управления режимами работы инжекторов, блок управления проводит регулярную диагностику состояния системы впрыска и при обнаружении неисправностей выдает соответствующий сигнал об ошибке на приборной панели (“Check Engine”).

Режимы работы MPI

В зависимости от режима работы форсунок различают несколько видов системы:

  • Одновременный впрыск. В такой системе все инжекторы открываются одновременно, подавая топливо в каждый цилиндр. Такая схема представляет собой усовершенствованный моновпрыск, поскольку ЭБУ управляет процессом открытия и закрытия всех форсунок как открытием одной. С другой стороны, объем подаваемого топлива для каждого отдельного цилиндра может быть разным.
  • Попарный впрыск. Открытие электромагнитных форсунок происходит парами, но при этом одна работает на такте впуска, а вторая в момент выпуска отработавших газов. В настоящее время такая схема применяется только на этапе запуска мотора или в аварийной режиме.
  • Индивидуальный впрыск. Это наиболее часто используемая схема, при которой каждая форсунка срабатывает по отдельности на такте впуска. Для обеспечения их работы в системе предусмотрен датчик фаз газораспределения. Он устанавливается на распределительном валу и определяет время срабатывания каждой форсунки в зависимости от положения вала. Впрыск топлива в каждый цилиндр происходит один раз за один рабочий цикл двигателя. Классическая последовательность работы форсунок: 1-3-4-2.

Отличия системы MPI

Многие путают MPI с распределенным впрыском в целом, куда также входит система непосредственного впрыска GDI (FSI, DISI, TSI), при которой подача топлива осуществляется напрямую в каждый цилиндр. Это важное различие, поскольку Multi-point injection предполагает образование топливовоздушной смеси в каналах впускного коллектора перед впускными клапанами.

Помимо этого, двигатели с многоточечным распределенным впрыском являются атмосферными, без использования наддува. А это означает, что такие двигатели имеют менее жесткие требования к качеству топлива.

Преимущества и недостатки многоточечного впрыска

Форсунки и рампа двигателя

Топливная рампа системы распределительного впрыска

Главными достоинствами системы распределенного (многоточечного) впрыска является более экономичный расход топлива и соответствие требованиям экологических стандартов в сравнении с моновпрыском или карбюратором. С другой стороны, двигатель MPI менее мощный, нежели моторы с непосредственной подачей топлива в цилиндры двигателя. При этом, в сравнении с системами с непосредственным впрыском, отличается менее затратным обслуживанием.

К недостаткам распределенного впрыска можно отнести сложность изготовления, и, как следствие, высокую стоимость. Это также относится к ремонту электронной системы и инжекторов. Для обслуживания и диагностики необходимо специализированное оборудование и высококвалифицированные специалисты.

Для отечественных условий системы многоточечного распределенного впрыска считаются наиболее оптимальными по соотношению стоимости и удобства обслуживания, а также по уровню получаемой мощности и комфорту эксплуатации.

Очень плохоПлохоХорошоОчень хорошоОтлично (7 оценок, среднее: 4,43 из 5)
Загрузка…

Понравилась статья? Поделить с друзьями:
  • Мометазон мазь инструкция по применению для чего она нужна
  • Руководство по работе с планом графиком
  • Тойота ленд крузер прадо 120 мануал
  • Частотный преобразователь holip инструкция на русском
  • Протаргол сереброфф спрей инструкция по применению